.

Butterfly Il — VMEbus

Interface (B2VME)

“Functional Specification

11.1

THIS DOCUMENT IS
BBN ACI PROPRIETARY.

Introduction

This chapter is a functional specification of the Butterfly I VMEbus Interface

" (B2VME). This chapter assumes some familiarity with the VMEbus specifica-

tion, the T-bus specification, the Butterfly I architecture, and the Motorola
88000 documentation.

The B2VME is the first in a family of function cards that comprise the Butter-
fly II. The primary function of the BZVME is to provide an I/O path between

- the Butterfly IT and peripherals on a VMEbus system. In addition, it appears
" as a “normal” processor node on the Butterfly H switch.

Figure 11-1 is a block diagram of the BZVME. The B2VME consists of five '
modules: the CPU, the memory, the switch interface, the Test and Control Sys--

tem (TCS) interface and the VMEDbus interface. These modules communicate

with each other across the T-bus. The T-bus is a synchronous, multiplexed

address/data bus that supports a variety of transactions. The T-bus transac-
tion protocols are designed to avoid deadlock situations while obtaining good
performance in communication among devices on the bus and throughout the
system. The operation of the T-bus is documented in the T-bus Specification.
Dedicated paths between the CPU and memory, and between the TCS and
Switch Interface Gate Array (SIGA), have been added to enhance perform-
ance and simplify the design. This chapter describes the CPU, the memory
system, the TCS module, and the configuration and control registers of the
B2VME. The interface between the BZVME and the Butterfly II switch is im-
plemented by the Switch Interface Gate Array (SIGA) that is described in de-
tail in the switch chapter. ' '

Draft: August 15, 1988 BBN ACI Proprietary 223

11: B2VME Function Card : ' Butterfly i Hardware Architecture

B2VME :
Motorola 88100 .

CONFIGURATION RISC CPU MAIN :

- MMU and MMU and :
A'\AD CIONTRO'- | 16 KB CACHE |16 KB CACHE [€¢>| MEMORY | .
EGISTERS (instruction) (data) (4-16 MB) :

slave ' : master | slave :

R R

)

T

11

-——>

slave © master TEST & CONTROL | slave master :
SWITCH SYSTEM (TCS) VMEbus X
INTERFACE INTERFACE) INTERFACE |
requester server slave processor | master slave |

BUTTERFLY
SWITCH

TEST AND CONTROL SYSTEM

Figure 11-1. B2VME block diagram.

112 CPU

The CPU includes a a Motorola 88100 microprocessor, two Motorola 88200
Cache/MMU chips, and an interface to the T-bus.

. The CPU interface includes a T-bus master finite state machine that generates

single cycle read and write requests and cache burst read and write requests on
the T-bus, in addition to the fast path to memory.

224 BBN ACI Proprietary Draft:-August 15, 1988

Butterily i Hardware Architecture , . © 11: B2VME Function Card

Because the operation most frequently performed by the CPU is fetching in-
structions from local memory, the CPU also has a specialized fast path that
bypasses the T-bus and allows the CPU to communicate directly with the
memory to optimize performance. This path has circuitry to detect when the
CPU will be given ownership of the T-bus in advance of the T-bus arbitration
circuitry, and a dedicated address path. The response to a memory fetch is
returned over the T-bus, whether the access used the fast path or not. .

The CPU can execute code stored on a remote node. Fetching each instruction
over the switch, however, slows execution appreciably, so code is almost always
stored locally. With the instruction cache turned on, the remote access cost
may be amortized over many executions of the code, such as iterations of a '
loop. In this case, or for very short sections of code, execution across the switch
may be appropriate.

CPU Memory Access Timing

TO BE DISCUSSED:

1. cache hit e '

2. cache miss = fast path (burst / single word — applies to below too?)
3. cache miss if fast path disabled = T-bus '

4, cache miss = switch

[The following is the most recent (June 27, 1988) calculations from Robert
Wells and Tom Downey. THESE ARE STILL UNDER DISCUSSION AND-
EVALUATION.] :

Access Type Clock Ticks (20MHz) Time (usec)
cache hit 3 Cc.15
local, non-cacheable 11 Q.55
local, cache miss 17 . .0.85
remote, non-cacheable 28 1.4
remote, cache miss 34 1.7

Access Type

To compute peak bandwidths, divide the number of bytes transferred by the
time to transfer. For cacheable data, assume that the data unit pipeline al-
lowed the second, third, and fourth words of a 16-byte load to be handled in
one clock tick each. Given this, the following bandwidths result:

Peak Bandwidth (MB/sec) Formuls

cache hit 80 : 4/.05 (4 bytes per tick)
local, non-cacheable 7.3 - 4/.55

local, cache miss 16 ' 16/(.85+3*.05)

remote, non-cacheable 2.9 4/71.4

remote, cache miss 8.6 " 16/(1.7+8*.05)

Draft: August 15, 1988 BBN AC! Proprietary : 225

- MU BevME Funchion Gard Butterfly il Hardware Architeciure

Turning the XMEM Instruction Into T~bus Locks

The 88000 instruction set includes the exchange memory (XMEM) instruction
to support atomic operations. Refer to the 88000 User's Manual for a descrip-
~ tion of this instruction. When the CPU executes the atomic instruction
XMEM, the DLOCK output pinis asserted. The B2VME hardware maintains

 the atomicity presumed by the CPU by opening and maintaining a T-bus lock

when DLOCK is asserted. If the reference is to a bypassed page, the lock is not
generated. The T-bus FREE_LOCKS protocol is executed when the DLOCK
pin goes from asserted to de-asserted.

NOTE .x\"'\\\“u\"-.“-.\"v@‘\'n."\R"'\"ﬁ.\\\\\\\\\‘y\‘\\\‘ﬂ\‘k\\\\\\'\\\\‘u\\‘w‘"

RESTRICTION OF USE

One restriction applies to the XMEM instructions: atomic instructions cannot
be included in locked augmented sequences unless they access the memory
module that is locked, or access bypassed memory." If this restriction is vio-
lated, the instruction will terminate in a bus error. Note that the XMEM
“atomic” instruction within augmented sequences that are bypassed is not
guaranteed to be atomic, since no lock is generated. The lock augmentation is
controlled by the Augmentation register, described in detail later.

" M, T T T, T, T M, M M M, ", e, e T T T N T T, T N T e, e, e T R, T Y T

Interrupts to the CPU

The B2ZVME CPU receives interrupts from three kinds of sources: other proc-
essors, VMEbus devices, and on-board timers. These are listed below, The
88100 microprocessor has only one interrupt level, so all interrupts are OR’ed
together to generate the interrupt signal to the processor chip, When an inter-
rupt is detected, the interrupt handler reads the Interrupt Source register to
find out which type of interrupt has occurred. The Interrupt Source register
has a field for each interrupt type, andis descnbed in detail in the register sum-
mary section.

* Interrupts from processors (typically other processors, but the CPU may
generate an interrupt to itself if desired)

o Maskable interprocessor interrupt
o Non-maskable interprocessor interi-upt
o Interrupts from VMEbus devices — Seven levels are distinguished.
@ Interrupts from on-board timers
o Interrupts Disabled Timer

o Real Time Clock (RTC) timer, called the Time Of Next Interrupt
(TONI) register — Each of two SIGA chips on the B2VME has two

226 BBN ACI Proprietary Draft; August 15, 1988

Butterfly || Hardware Architecture

11.3

11: B2VME Function Card

TONI registers, for a total of four programmable timers driven by
real time; normally, only one SIGA or the other is in use.

A Butterfly IT processor can generate a remote interrupt request by setting a
bit in the Interprocessor Interrupt register at the destination node. The Inter-
processor Interrupt register for each processor node resides in page 1in bank 0
of its physical address space, and is therefore accessible to every processor in

- the machine. The operating system controls access to the interprocessor inter-

rupt by giving this page appropriate protection attributes.

The destination processor further controls remote interrupts with the Inter-
rupt Enable Mask. The Interrupt Enable Mask is applied to the Interproces-
sor Interrupt register input. If the Interrupt Enable Mask bit for the
interprocessor interrupt is zero, then the interrupt request will not be gener-
ated. Attempts to set the Interprocessor Interrupt register when it is masked
resuit in a bus error.

A register for generating a non-maskable interrupt resides in a supervisor
page of configuration and control registers, The non-maskable interrupt
should be used only when fatal errors have occurred. The non-maskable inter-
rupt will interrupts the CPU unless the CPU has disabled its entire interrupt

- system by manipulating its internal processor status register.

In addition to interprocessor interrupt requests, VMEbus interrupt requests
can also interrupt the BZVME processor. VMEbus interrupts to the processor
are subject to the Interrupt Enable Mask. If the mask bit for a VMEbus level is
zero, then the interrupt to the processor will not be generated, even if the
VMEDbus interrupt request signal at that level is asserted. When a VMEbus

* interrupt occurs, the level of the highest priority pending interrupt is indicated
- byafield in the Interrupt Source register. The BZVME can also generate inter-

rupts onto the VMEbus, as described later.

Finally, interrupts are generated to the B2ZVME processor, and all Butterfly IT
processors, by the expiration of the Interrupts Disabled Timer and by the real
time clock. These, and other timers, are discussed below.

Memory Subsystem

[“THIS SECTION NEEDS MORE WORDS.” IT WILL PROBABLY BE
BEEFED UP AS WORK ON THE MEMORY CHAPTER PROGRESSES.]

The B2VME memory subsystem features four megabytes of dynamic RAM
arranged as 1M x 38-bit words. Each word has 32 data bits, one tag bit, and
five parity bits, as described below, The memory array is implemented using
80-nanosecond, 1M x 1-bit DRAMs. The memory array is expandable to 16
megabytes when 4-megabit DRAMs become available. Read or write cycles to

Draft; August 15, 1988 BBN AC Proprietary - ez

11: B2VME Function Card

11.3.1

228

the memory array complete in 200 nanoseconds. Writes are acknowledged im-

mediately. Memory accesses are never split on the T-bus. Accesses are re- |

fused when the memory is refreshing, or if a write has not completed. The
memory subsystem supports the T-bus locking protocol.

The memory subsystem supports byte, halfword, and word reads and writes.
33-bit burst reads and writes are also supported. New data is supplied every
100 nanoseconds during burst reads. The T-bus “PAUSE, MORE" protocol is
used to throttle data requests during bursts.

One tag bit is associated with each word in the array to support the steal/sneak
protocol discussed above. The value of the tag bit is returnedon T_AD <32>

_ of the T-bus with every read access. The tag bit is set or cleared with write
* accesses, subject to the value of T_ AD<32>.

Byte-wide parity generation and checking is performed on every memory ac-
cess. The tag bit has its own parity bit. Parity errors are reported on the
M_PARITY signal.

FOR GLOSSARY: T_ LATE _ERROR — an old name, still found on some
schematics, for the M_ PARITY signal, from a time when it used to be a T-bus
signal. M_PARITY is now mdependent of the T-bus, and indicates a memory
parity error.

‘The memory subsystem performs a “hidden” refresh cycle once every 12.8 mi-
croseconds. Hidden refresh utilizes internal counters to generate the refresh
address, and thus requires minimal external support circuitry. The refresh cy-
cle is included in the memory control finite state machine. A refresh cycle re-
quires five T-bus clock cycles (250 nanoseconds). During a refresh cycle, all
T~bus requests to memory are responded to with REFUSED. Refresh re-
quests have the highest priority of any request to the memory.

Loading Interleaver and VMEbus Address Mapper

The interleaver and the VMEbus address mapper perform similar functions
for the Butterfly IT switch and the VMEbus, respectively. Both of these RAMs

look at the system physical address on the T-bus, and change some subset of

the address bits into different bits that are then shipped out over their respec-

tive /O ports (the switch and the VMEbus). The address translation must

happen in an expedient fashion in both cases, because any time used to calcu-
late the new address can directly impact the transfer speed. Static memories
efficiently solve this problem, and are employed in the BZVME. An address is
presented on the address lines and the access time later, the new address bits
appear on the data lines. The new address bits are simply the contents of the
memotry. '

The mechanism to load the interleaver is described... [NEEDED - HERE OR

MEMORY CHAPTER???}

BBN ACI Proprietary ' Draft: August 15, 1988

Butterfly i Hardware Architecture

= B e

= =

Butterfly Ii Hardware Architecture- ~ v s ' 11: B2VME Function Card

11.4

11.4.1

11.4.2

TCS Slave Interface and Debugging

TCS Slave Interface

Like every other Butterfly IT board, the B2ZVME includes a Test and Control
System slave processor to support bootstrapping, power-on servicing, and
monitoring of various environmental conditions.

The B2VME TCS slave has access to every addressable location in the BZVME
via the T-bus. Thus, it can access memory, VMEbus devices, and configura-
tion registers. It can also make references across the switch. To reduce hard-
ware cost, the TCS slave shares the T-bus interface used by the SIGA. When
the TCS master requests a data transfer into or out of the BZVME, the TCS
slave uses a dedicated four-wire communication channe! to the SIGA to fulfill
the request. The four wires are data in, data out, clock and frame. The proto-
col for this communication channel is defined in the Butterfly I Test and Con-
trol System chapter. '

The B2VME TCS slave processor has several functions. It monitors the ambi-
ent temperature in one location and the three supply voltage levels (+48, +35
and -5 volts) on the board. It supplies this information to the TCS master when

‘requested. It controls the on-board power supply. In addition, the TCS mas-

ter can reset the B2VME. Finally, the BZVME TCS slave can inform the TCS
master of the B2ZVME's board type.

The B2ZVME TCS slave interface is implemented using a Motorola 68HC11.
This device has 2 kilobytes of on-chip EEPROM, general purpose paraliel /'O
and serial I/O, A/D channels, a priority interrupt structure, a number of tim-
ers, and a 6800-type instruction set. '

- 'The TCS slave interface is powered by a supply located centrally in the Butter-

fly TI chassis. The power is distributed to the B2VME through the midplane
connector.

Power-up and Resetting

The B2VME is reset by application of power and by TCS action, as described
below. There is no reset button on the board. There is no way to explicitly force
a reset across the switch, No VMEbus device can explicitly reset the B2ZVME,
and when the B2ZVME resets the VMEbus that does not reset the B2VME
board. : '

A power-on reset circuit in the TCS interface leaves the B2ZVME in a reset
state after power-on. Before the BZVME can run, the TCS master must load
the appropriate bootstrap code, set several configuration registers, then clear
the power-on reset.

Draft: August 15, 1988 BBN ACI Proprietary : 229

- 11: B2VME Function Card Butterfly Il Hardware Architecture

11.4.3

The TCS clears the power—on reset in two steps. First, the TCS clears the reset
for all B2ZVME components except the CPU. With the CPU still held reset, the
TCS can perform appropriate start-up tests, configure the hardware by load-
ing control and configuration registers, and load bootstrap code into memory.
The second step is to clear the reset for the CPU, so it starts executing. Proc-
essing after a reset is one kind of exception processing, and is described in de-
tail in the Motorola 88100 User’s Manual.

Debug Connector

A _96-pin"DIN connector carries all T-bus -signals, the clk20 signal, de-
bug_driven and debug_slavepause, for diagnostic purposes. During initial de-

- bugging of the BZVME, a small board is plugged into this connector to pr_ovide

the circuitry necessary to run an EPROM-based debugger. The board in-
cludes a UART that supports two serial lines and its interface circuitry, a

* 32-kilobyte EPROM and a T-bus slave interface.

When the debugging daughter board is plugged into the B2VME, the daughter
board disables the low 64 kilobytes of normal memory and replaces it with the
debugging board’s address space, listed below. The EPROM is read-only, and
responds to any transfer size. The DUART is accessed only by byte transfers,
See debugging board documentation for the read/write capability and function
of DUART Ilocations.

(00008000 to 0x0000FFFF EPROM (all 32 kilobytes)
0x00004000 to 0x0000403C DUART
0x00008000 to 0x0000FFFF EPROM (all 32 kilobytes)

11.5

230

- VMEDbus Interface

This section briefly describes the VMEbus, and then discusses the operation
of each VMEbus feature implemented by the BZVME. A detailed description
of the VMEbus can be found in The VMEbus Specification, a Motorola publi-
cation available from Motorola [or from BBN ACI???]. The B2VME is de-
signed to revision C.1 of the spec1ﬁcat10n

-The VMEbus interface on the B2VME is a general purpose, bus coupling

mechanism that provides a path between the T-bus and a VMEbus. Through
the T-bus connection, VMEbus devices can access local or remote memory,
perform locked operations, and interrupt any processor on the machine. Simi-
larly, any Butterfly IT processor can access VMEbus memory, perform indivis-
ibie operations on VMEbus memory, and interrupt VMEbus devices.

BBN AC! Proprietary Drafi: August 15, 1988

-~

-~ W

Butterfly il Hardware Architecture R 11: B2VME Function Card

11.5.1 Brief Description of the VMEbus

The VMEbus Specification defines an interface, called the VMEbus, used to
connect data processing, data storage and peripheral control devices. The
VMEbus is an asynchronous bus defined in broad terms that allow a wide
range in performance while still conforming to the specification. This results
in some difficulty in characterizing maximum cycle times on the VMEbus, be-
cause cycles can be extremniely long without violating the specification.
The VMEbus Specification defines a functional module as “a collection of elec-
tronic circuitry that works together to accomplish a task”. The types of func-
tional modules defined in The VMEbus Specification include: .

e VMEDbus master

& VMEDbus slave

e Bus timer

e Interrupt generator

. Interrupt handler

¢ VMEDbus requester

e VMEDbus arbiter

e IACK daisy chain driver

o System clock driver

e Power monitor
A VMEDbus device implements a subset of this list to achieve the functionality
required of the device. For example, a CPU board might consist of a VMEbus
master, an interrupter, an interrupt handler, and a requester, A disk controller
might include a VMEbus master, slave, interrupter, interrupt handler, etc. A
memory board might consist of only a VMEDbus slave.
A device called a system controller is required in each VMEbus system. It
physically resides in slot one of a VMEbus, and performs the functions of arbi-
ter, system clock generator, bus timer, and IACK daisy chain driver. The sys-
tem controlier function is sometimes performed by a device that expects to be
the only VMEbus master in a system — for example, a CPU board.

11.5.2 B2VME Functionality
Figure 11-2 is a block diagram of the B2ZVME VMEbus interface.
Draft: August 15, 1988 BBN ACI Proprietary 231

11: B2VME Function Card

VMEbus rmaster / T-bus slave

Butterfly It Hardware Architecture

VMEDus slave / T-bus master

transaction bus (T-bus)

B ED EJ

i tV = [VwEes -
. interru : uester :
arbiter generator] , e ! u
y \ Y Y .
X data ;
inter- v trang- '
rupt ' VMEDbus caivers | ! u
. master !
' controt A !
Y Y Y

232

Figure 11-2. VMEbus interface block diagram.

The B2ZVME can be used in a several different configurations. In some envi-
ronments, the BZVME may be the only VMEbus master in the system. When
this is the case, the BZVME may also be required to perform the VMEbus sys-
tem controller task. In other environments, the BZVME will provide a path
that 2 VMEbus master will use as a DMA (direct memory access) target, from
the VMEbus into Butterfly IT memory. In this case, the BZVME will function
primarily as a VMEDbus slave. Because the B2VME must perform a variety of |
tasks on the VMEbus, it implements all but one (power monitoring) of the
functional modules defined in The VMEbus Specification. The system control-
ler functions (arbiter, system clock driver, bus timer, and IACK daisy chain
driver) can be enabled or disabled by setting a jumper on the B2ZVME. Note
that when the BZVME is functioning as a VMEbus master, it is also function-
ing as a2 T-bus slave. Similarly, if the BZVME is functioning as a VMEbus
slave, it is also a T-bus master.

BBN ACI Proprietary Draft: August 15, 1988

\/
)
Lot oo R 2t

Butterfly Il Hardware Architecture i : 11: B2VME Function Card

VMEbus Master

The B2ZVME VMEbus master interface accepts requests from the T-bus, and
converts them into requests on the VMEbus. The VMEbus master interface
splits cycles on the T-bus, letting other T-bus masters use the T-bus while the
VMEDbus transaction is completing. This is necessary because the access time
on the VMEbus can be arbitrarily long, and therefore an access to the
VMEbus is not guaranteed to complete in any reasonable amount of time from
the perspective of the Butterfly IT design.

The T-bus locking protocol is observed by the VMEbus master interface. A
lock request on the T-bus results in disabling the VMEbus arbitration, and
holding the VMEbus until the lock is released. This prevents any other
VMEbus master from accessing any VMEbus resource, thus preserving the
atomicity of the T-bus lock. Note that if the VMEbus resource is dual-ported,
then atomicity is no longer guaranteed. An example of a dual-ported VMEbus
resource is the Motorola memory board that connects to botha VMEbus anda
faster auxiliary bus called VMX, -

The VMFEbus address space is accessible to the Butterfly II through the
VMEbus master address mapping RAM (VMEbus master mapper). The
VMEDbus master mapper divides four megabytes of Butterfly IT address sapce
and allocates it into 8-kilobyte blocks of VMEbus address space. The master
mapper takes nine address bits (21..13) of the address offset field and maps
them into the six VMEbus address modifier bits, and bits 31..13 of the
VMEbus address. Refer to The VMEbus Specification for more information
about the address modifiers. The low order 13 address bits pass directly
through to the VMEbus. The VMEbus master mapper is loaded by the inte-
rleaver loader described above. Figure 11-3 illustrates the VMEbus master
mapper.

Draft: August 15, 1988 BBN ACI Proprietary _ 233

11: B2VME Function Card ‘ Butterfly Il Hardware Architecture

234

T-bus . >

(many) _T—A°<21--13>¢ T AD<12.0>
. VMEbus Master Map RAM
T-bus slave _
VMEDbus master
o VMEbus
IACK bit -

/ /

vme_am<5..0> vme a<31..13>] vme _a<12.0>

VMEbus >

Figure 11-3. VMEbus master mapper.

VMEDbus Slave

The VMEDbus slave interface responds to single-word read and write requests
on the VMEbus. These requests translate into memory references across the
T-bus. The T-bus master can handle split cycle and non-split cycle responses
from the target address. These may result in extremely long VMEbus cycles
for access to memory that does not reside on the local node. The VMEbus
slave interface on the BZVME does not respond to sequential transfer requests
on the VMEbus (also called “block transfers” in The VMEbus Specification).

A master on the VMEbus addresses Butterfly Il memory through the Butterfly
II address mapping RAM (VMEDbus slave mapper). This mapper takes the
several-megabyte block of VMEbus address space and allocates it into eight-
kilobyte blocks of Butterfly IT address space. When configured to respond to
standard address format on the VMEbus, the window in VMEbus address
space is two megabytes; configured for extended VMEbus addressing, the win-
dow is eight megabytes. The VMEbus slave mapper takes bits 21..13 of
VMEDbus address and translates them into the high 21 bits of the Butterfly II
system physical address. In addition, the VMEDbus slave mapper sources the
T-bus signals T PATH<1.0>and T_PRIORITY <1..0>, and the SIGA in-
putsignal INTERLEAVED. The VMEbus slave mapper allows the process to
utilize the Butterfly IT addressing scheme to the extent required to obtain the

BBN ACI Proprietary Draft: August 15, 1988

i

)
,

G S e

Butterfly il Hardware Architecture . L _ 11: B2VME Function Card

type of performance required. For example, if the fastest transfer is required
and T-bus locks can be ignored, then all accesses can be mapped bypassed to
the local node. If the VMEbus device transferring data to the Butterfly II
wants to spread it out over the machine, this can be accomplished automati-
cally by mapping into interleaved memory. These accesses would be subject to
the maximum switch lock time, and therefore may be very slow.

The occurrence of read-modify-write cycles on the VMEbus is difficult to pre-
dict because there is no'indication that a VMEbus read-modify-write cycle is
taking place until after the read has completed. Each map location can be con-

- figured as read-modify-writable memory in the VMEbus slave mapper. Any

‘accesses to this memory opens a T-bus lock. The lock is closed when the trail-
ing edge of VMEDbus address strobe is detected. '

Figure 11-4 illustrates the VMEbus slave mapper.

<

VMEbus >

lvme_am<5..0> lvme_a<31--23> or i vme_a<22.13> vme_a<12.0>

vme_a<23.21>

¥MEbus slave |€— bypass VMEbus Slave Map RAM
~bus master ¢ 1ok tous
address enable |
(tbus_adr_en) .
A 2 A 2 A7 21
INTERLEAVED
signal to SIGA

/ / /

T PRIORITY<1.0>(T PATH<1.0> T AD<33.13>] T_AD<12.0>

T-bus _ >

NOTE

Figure 11-4. VMEbus slave mapper.

o T N T T T N T T N T T T N T R TR T T N M T T T T T M T T N T e T T R

TECHNICAL DETAIL _

The B2VME VMEDbus slave mapper receives the six bits of VMEbus address
modifier. In the initial implementation, these bits are used only to determine
whether the reference is using standard or extended addressing. This process-
ing is performed in a programmable logic array (PLA) chip, however, so future

_Draft: August 15, 1988 . BBN AC! Proprietary o 235

11: B2VME Function Card _ Butterfly il Hardware Architecture

236

applications needing more subtle effects may be accommodated by substitut-
ing a differently programmed chip.

T T o o 0 3 N T T T R T R T L

- VMEbus Interrupt Handling and Generation

The B2ZVME generates interrupts to the VMEbus, and handles interrupts
from the VMEbus. A Signetics SCB68154 chip implements the interrupt gen-

erator. This device has two internal read/write registers, the VMEbus Inter-

rupt Request register and the VMEbus Interrupt Vector / Control register.
The protocol for generating an interrupt on the VMEDbus is discussed in detail
in the SCB68154 data sheet in the 1986 Signetics Microprocessor Manual.

Interrupts received from the VMEbus result in interrupts to the 88000 on the
B2VME as described in the section on interrupts to the CPU.

VMEbus Requester

The VMEbus master on a device signals the requester to obtain the bus when a
transaction is required. A requester must obtain the bus before any transfers
can’ be initiated. The requesters on the VMEbus communicate with the
VMEDbus arbiter to determine ownership of the bus. There are two types of
requesters: release-on-request and release-when-done.

Release-on-request requesters do not let go of the bus after the transaction is
completed. Instead, they wait until another master requests the bus before
releasing it. If another transaction is requested by the the release-on-request
requester’s master, then arbitration does not take place again, because owner-
ship has not been relinquished. Release-on-request requesters are useful
when the associated master is the primary, or most frequent, owner of the bus.

Release-when-done requesters release the bus during or after the transaction
is completed. Releasing the bus during the last transaction allows arbitration
to take place while the transaction completes, and reduces the overhead of
changing masters on the bus. Release-when-done requesters are useful when
the associated master is not the primary master on the VMEbus.

The B2ZVME requester can be configured either as release-on-request or as
release-when-done to tailor its performance to the application.

VMEDbus System Controller

The B2VME can function as the VMEbus system controller when necessary.
This option is jumper selectable. As the system controlier, the B2VME will

'BBN ACI Proprietary Draft: August 15, 1988.

\

Butterfly Il Hardware Architecture. .+ = = © 11: B2VME Function Card

perform the following VMEDbus functions: arbiter, bus timer, JACK daisy
chain driver and system clock driver. :

VMEbus Arbitration

Three types of arbitration can be implemented on the VMEbus: prioritized,
round-robin-select and single level. The simplest form of arbitration, single
level, only monitors requésts and issues grants on bus level 3. Because bus
grants are daisy chained within a single level on the VMEDbus, priority is as-

signed only by slot order in the VMEbus card cage. The B2ZVME VMEbus

interface implements single level arbitration. Refer to The VMEbus Specifica-
tion for descriptions of the other arbitration schemes.

The VMEbus arbiter is implemented as a finite state machine clocked at 32
megahertz. When the B2ZVME is functioning as VMEbus system controller, it
also pulls up the bus grant 2, bus grant 1 and bus grant 0 signals to a high state.

IACK Daisy Chain Driver

The VMEbus interrupt acknowledge (IACK) signal is carried on two bits. One
bit is common to all devices and announces that an interrupt acknowledgment
is present. The other bit is daisy-chained from device to device, and each de-
vice must repeat that signal onto the next link of the chain, uniess that device is
processing the acknowledgment. The VMEbus system controller must take
the single-wire signal and drive it onto the daisy chain. In the B2VME, the
IACK daisy chain is driven by the SCB68154 (interrupt generator). -

[THE SCB68154 CHIP SPECIFICATION AND DATA SHEET SHOULD
BE INCLUDED AS AN APPENDIX TO THIS CHAPTER]

VMEbus System Clock Driver
The VMEDbus system controller must dri\}e a 16 megahertz clock signal on the
VMEbus. When the B2ZVME is operating as system controller, this signal will

be generated by dividing the arbiter’s 32 megahertz finite state machine clock
by two and driving the result onto the bus.

VMEbus Bus Timer

See information in timer section,

11.5.3 Resets to and from the VMEbus
The Butterfly II generates a reset on the VMEbus by setting a bit in the
VMEbus control register. Resetting the BZVME board does not reset the
Draft: August 15, 1988 BBN ACI Proprietary | | _ 237

11: B2VME Function Card o ‘Butterfly Il Hardware Architecture

11.5.4

11.5.5

11.6

238

VMEDbus. Like_uﬁse, resetting the VMEbus does not reset the B2VME.
VMEDbus resets can be monitored by the B2ZVME. If the VMEbus is turned

off, all signals are terminated correctly such that no spurious signals occur and
the VMEDbus is held reset.

Performance

The VMEDbus slave interface sustains data rates of 8 megabytes per second.
The VMEbus master interface performs single transfers at a rate of 5 mega-
bytes per second. [THESE DESIGN FIGURES HAVE YET TO BE
CHECKED BY MEASUREMENT] -

- Summary of VMEbus Features Supported

In summary, the BZVME supports the foi!owiﬁg VMEbus-related features:
o T-bus initiated read and writes
e T-bus locking
e VMEbus initiated Eingle reads and sirigle writes |
e Jumper selectable release-on-request or release-when-done
o Single level arbiter
s Interrupt handler
e Interrupt generator
e System clock driver

e Bus timer

Augmentation
[THIS SECTION MAY MOVE TO THEFUNCTION BOARD CHAPTER)

Augmentation is a feature of the Butterfly Il architecture that allows each CPU
in the system to perform some operations auxiliary to normal functionality.
The primary goal of augmentation is to provide a mechanism for performing
atomic operations in the multiprocessor environment of the Butterfly IT, where
many processors ¢an access the same memory. In addition, augmentation per-
mits the implementation of some features, unique to the Butterfly II, that are
not supported by the 88000.

An augmented memory reference results in the occurrence of some operation
in addition to, or in place of, the reference. For example, augmenting a read or
write operation with a memory lock causes the path to the memory to be held
open after the read has completed. This gives the CPU exclusive access to the

BEBN ACI Proprietary Draft; August 15, 1988

| Y

|

Butterfly l Hardware Architectiirs . 11: B2VME Function Card

11.6.1

target memory module until it releases the memory by clearing the lock aug- _
mentation. A mechanism of this type would not be required in a uniprocessor
environment, where only one CPU initiates transfers to the memory.

Augmentable References

'When augmentations are enabled, they affect only a subset of the references

generated by the CPU. Augmentations are defined as side effects to data refer-
ences, and thus instruction fetches are never augmented. In addition, aug-
menting certain data references, such as references associated with exception -
processing in the CPU, would result in incorrect system behavior and must be
prevented. The architecture therefore supports an addressing facility that pre-
vents augmentation.

" Augmentation of data references can be prevented by mapping the data in the

bypassed address space. A reference to local bypassed memory can be identi-
fied by detecting that the bypass bit in its physical address is set. The physical
address is the address generated by the memory management unit. Refer to
the memory system chapter for a complete explanation of the structure of the
Butterfly II address space.

Table 11-1 lists the types of data that should not be augmented and should
therefore res1de in bypassed address space.

Table 11-1. Types of data references that should be mapped bypassed.

MMU page table walks

Exception vectors

Supervisor stack references

Augmentation register (AR)

Configuration and control registers besides AR

11.6.2 The Augmentaﬂon Reg:ster
The Augmentation Reglster (AR) controls augmentations. The AR entry in
the register summary section shows the assignment of the AR bits.

11.6.3 Disable Interrupts Augmentation
Interrupts to the processor are disabled by setting the disable interrupts bit in
‘the AR. Setting this bit prevents the interrupt request input to the processor
from being asserted. Disabling interrupts is a key step toward maintaining -
atomicity. This is discussed further below.

Draft: August 15, 1988 BBN ACI Proprietary ' . 239

11: B2VME Function Card Butterfly Il Hardware Architecture

11.6.4

NOTE

240

Interrupts are serviced by the processor when it is between instructions, Un-
fortunately, disabling the interrupt request input to the CPU does not guaran-
tee that previously pending interrupts will not be serviced, because there is an
internal interrupt request pipeline. For example, if a device is requesting an
interrupt, and interrupts become disabled, the interrupt request will no longer
be asserted at the processor interrupt request pin. However, the processor

- may still see and service the interrupt because the request was latched inter-

‘nally before it was de-asserted. If interrupts are disabled with a read instruc-
tion, and an interrupt has been latched internally, it will be serviced
immediately following the read and before any subsequent instructions can be
executed.

Intei-rupts to the processor cannot be disabled indefinitely. The Disable Inter-
rupts augmentation is subject to the Interrupts Disabled Timer, discussed be-
low in the section on configuration and control registers.

Lock Augmentation

Setting the lock bit in the AR causes the path to the resource being accessed,
and the resource itself, to be held open after the access has completed.

The first augmentable reference with the lock augmentation enabled turns into
an OPEN operation on the T-bus. Subsequent references turn into MAIN-
TAIN T-bus accesses.

A transition from one to zero of the AR lock bit automatically generates a T-
bus FREE_LOCKS cycle. This allows clearing the AR lock bit and generating
the FREE_LOCKS to be performed in a single CPU instruction. _

Refer to the T-bus Specification, or to the switch chapter, for a complete de-
scription of the Butterfly II lock protocol.

T T T T T T T M T T i T T T T T T R R R R T

- TECHNICAL DETAIL

H the lock bit in the AR is “1”, and the CPU locks a resource, the CPU inter-
face remembers this. Then when the lock bit is cleared to “0”, the CPU inter-
face automatically generates a FREE_LOCKS cycle on the local T-bus. Ifa
remote resource was locked through a switch connection, the local SIGA
knows this and, seeing the FREE_LOCKS on the local T-bus, propagates the
“drop-lock condition over the switch to the remote node, where the remote
SIGA generates a FREE_LOCKS cycle on the remote T-bus, freeing the
locked resource. The CPU cannot explicitly generate a FREE_LOCKS cycle,
only implicitly as a side effect of clearing the lock bit in the AR after having
locked a resource, or as a side effect of the XMEM instruction (described

BBN ACI Proprietary " Draft: August 15, 1988

Butterfly It Hardware Architecture ~ ~ ~ 0 11: B2VME Function Card

11.6.5

above). If no resource is locked, setting and clearing the lock bit in the AR does
not generate a FREE_LOCKS cycle.

S A T T T T T M T, B T e e T T

Exception Processing During Locked Sequences

[THIS MAY BELONG BETTER IN A SECTION OR CHAPTER ON
“PROGRAMMING THE B2VME” OR SOMETHING LIKE THAT]

" In the demand-paged memory environment of the Butterfly II, page fault and

copy-on-write exceptions occur routinely during normal operation. However,
processing these exceptions requires too much time to allow a locked path to
remain open, Consequently, locked sequences are terminated when these
faults occur. In addition, atomicity can not be guaranteed if the CPU can be
interrupted during a locked sequence. Ifa locked sequence were interruptible,
the interrupt handler might try to reference remote memory while the switch
path out of the board was locked. Either the interrupt handler would have to
be prevented from successfully completing the reference, or it would have to be
permitted to break the lock. ‘

If the interrupt routine was permitted to break the lock and the locked memory
was accessed, then atomicity would no longer be guaranteed. If the interrupt
handler was prevented from accessing the memory until the lock was freed, a
deadlock situation could result because the interrupt handler would not return
from the interrupt until it could access the memory, but the memory would not
be freed until the interrupt handler returned and allowed the augmentation to
complete. Alternatively, the interrupt handler could return from the interrupt
without completing the interrupt service routine, and retry after the lock was

_ released. In this case, the interrupt would not actually be serviced until the

augmentation ended, and thus allowing the exception processing during the
augmentation would not accomplish anything.

Disabling interrupts to the CPU during locked sequences would handle the
problem of maintaining atomicity, However, a conflicting constraint in the
Butterfly IT is that to support real-time applications, the maximum delay be-
fore servicing an interrupt must be guaranteed. Consequently, interrupts can-
not be disabled for arbitrary periods.

Page faults, copy-on-write faults and interrupts are all exceptions that can be
handled similarly during locked sequences. The Augmentation Register has
two bits called the exception action bits that can, with software support, handle
the problems described.

The exception action bits distinguish three actions: continue, restart and abort,
which can be taken at the end of exception processing. Under normat circum-
stances, the processor resumes operation at the instruction that terminated in

Draft; August 15, 1988 BBN ACI Proprietary : 241

11: B2VME Function Card

242

Butterfly il Hardware Architecture

-an exception. The “continue” exception action code indicates that the CPU

should proceed normally.

If the exception action code is “restart”, the exception handler loads the restart

address, which has been saved in a software-defined register or memory, into
the PC and returns from exception. The instruction sequence is then re-exe-
cuted starting from the restart address. If the exception action code is “abort”,
then getting any exception is fatal to the process, and the process is aborted.

[EXAMPLE CODE BELOW IS REALLY THREE-PHASE. DESCRIP-
TION BELOW WAS FOR 68000 CODE AND MUST BE REVISED FOR

" THREE PHASE 88000 CODE. EXAMPLE CODE IS ATOMIC ADD, BUT
 DESCRIPTION WAS FOR READ TWO WORDS AND WRITE THEM

BACK SWAPPED.]

Using the exception action bits, a two-phased approach can be used to prevent
page-fault and copy-on-write exceptions, and to disable interrupts at the ap-
propriate time during a locked sequence. A locked sequence can be divided
into two phases: the information gathenng phase and the data modification

: phase

During the first phase, all data required to perform the locked operation is
referenced and write acc_c-:s_s is tested. In addition, a label at the end of the
locked sequence is referenced to ensure that all of the code is resident in main

- memory. The “restart” code is loaded into the exception action bits, the restart

address is saved, and the lock bitin the AR is set. Page faults and write access
violations are processed during phase one. The switch path to remote memory
(if one is required) is established and locked. Interrupts should not be disabled
during phase one.

If a bus error or an interrupt is taken during phase one, the AR is cleared by the
exception handler. The lock bitin the AR changes from “1” to “0”. This gener-
ates a T-bus FREE_LOCKS sequence (if a resource has been locked) and the
switch path is torn down (if it has been opened). The exception processing is
performed. At the end of the exception processing, the restart address is
loaded into the PC and the CPU returns from the exception. The sequence
starts over at the beginning of the phase one instruction sequence (i.e., at the
restart address). If bus errors or interrupts continue occuning, execution re-
sumes at the restart address again and agam, until a full pass is made through
phase one.

“During the phase two, new data is written to memory. Note that until a write
occurs that changes the destination, the entire process can be restarted without

any problems. However, as soon as a modifying write has been performed, the

state of the memory may no longer be consistent, and thus restarting the opera-

tion may result in incorrect results.

BBN ACI Proprietary " Draft: August 15, 1988

b

Butterfly Il Hardware Architecture

11: B2VME Function Card

The transition from phase one to phase two takes place after all data and code
has been referenced, and the path to the memory is opened and locked. Inter-
rupts are disabled by reading the address in the AR block that sets the inter-
rupt disable bit. Recall that reading the interrupt disable location to set the bit
ensures that if an interrupt is pending, it will be serviced immediately after the
read, and before any other instruction can be executed. The “abort” code is
then loaded into the AR exception action bits. Setting the disable interrupts
bit and the exception action bits must occur sequentially, because an interrupt
can happen immediately after the disable interrupts bit is set, and it is not fa-
tal,” If the exception action bits were set to “abort” simultaneously with the
setting of the disable interrupt bit, the interrupt which could occur immedi-
ately after this instruction would abort the process rather than restart it.

The transition to phase two completes when the “abort” code is loaded. At this
time, all exceptions are fatal to the process. The path to the memory to be
modified is already open (i.e., Jocked) from phase one, and data modification
proceeds. :

At the end of phase two, the AR is cleared. This causes a transition from “1” to
“0” of the lock bit, which causes a FREE_LOCKS. Clearing the AR also re-
enables interrupts and resets the exception action to “continue”. The locked
sequence is thus terminated.

An example of a locked sequence that conforms to the two-phased methodol-
ogy described is shown below.

/* C code equivalent */
int aa_uaug(value,addr)

int *addr;
int valu?; -
{
- *addr += value; /* body done atomically, via user augmentation */
return *addr; '
}
R Augmentation register definitions ———--
def AR_BLOCKBOTTOM, OXE0758000 '
def AR_LOCK, 0x0004 -~ ; lock switch path
def AR _DISINT, 0x0100 ; disable interrupts
def - AR_RESTART, 0x0200 : exception action -- restart
def AR_ABORT, 0x0600 - ; exception action -- abort
text ,
global _aa_uaug
_aa_uaug: :
. Assumes that bus error handler looks for restart address in 10
or.u rlo0,r0,hil6(_aa uaug) . Set restart address into ril0
or rl0,rl0,lol6{_aa_uaug)

.-k
LI
.

LI]

..
[N

Lock the switch path, restart if it faults

. We exploit our knowledge that the flags are in the low half,

to load the top half once and use it three times

Draft: August 15, 1988 BBN ACI Proprietary | 243

11: B2VME Function Card

or.u
1d

br.n
1d

Butterfly Il Hardware Architecture

r12,r0,hil6 (AR_BLOCKBOTTOM)

'r13,112, 1016 (AR_BLOCKBOTTOM+AR_LOCK+AR_RESTART)

bottom ; Make sure all code pages are resident
r11,r3,0 - ; Lock down data value, make sure it is resident

;3 Transition to phase 2, disabling interrupts
1 We are reusing_the top half loaded above

middle:
14

r13,r12,1016(AR_BLOCKBOTTOM+AR_DISINT+AR_RESTART)
; Might take pending interrupt here

addu r13,r13,0 ; Drain load/store pipe, take traps

;; Transition to phase 3, committing the transaction
i3 We are reusing the top half loaded above

ld

‘addu
st

‘return:

r13,r12,1018 (AR_BLOCKBOTTOM+AR_LOCK+AR_DISINT+AR_ABORT)

r2,r2,ril : Do the addition
r2,r3,0 ; Store updated value at argument address

jmp.n r1 - ; Return to caller (updated value is in r2)

1d

11.6.6

rl2,r12,1016 (AR_BLOCKBOTTOM) ; Clear the augmentations

Synchronized Access Augmentation

Remote accesses can be attempted less frequently (“backed off™) after the
switch interface has received a reject. This throttles the retry rate and achieves
a better pattern of switch traffic than would be attained if retries were allowed
at any time.. The SIGA has a very general mechanism for specifying the initial
transmission and retry criterion for each message class. This mechanism is
described in detail in the switch chapter.

Setting the synchronized access augmentation asseris the T-bus signal
T_SYNC. This indicates to the SIGA that the current access should use the
“Slot0” transmission strategy. By correctly programming the SIGA, this can
produce the effect of attempting the current access using the backoff criterion
on the initial transmission, rather than waiting until a reject has occurred. A

~ use for this augmentation is described below.

11.6.7

244

Steal Augmentation

[SOME OF THIS SECTION MAY BELONG IN MEMORY CHAPTER]
A tag bit is associated with the 32 bits of each word in Butterfly Il memory. The
value of the tag bit is returned with every read access. A memory location is

defined to be stolen when its tag bit is set. Reads from a location that has been
stolen terminate in bus errors. The tag bit is associated with 32-bit quantities,

BBN ACI Proprietary Draft: August 15, 1988

)
/

o

Butterfly i Hardware Architecture : - , o 11: B2VME Function Card

11.6.8

and attempting to access any portion (byte, half-word, word) of a location after
it has been stolen results in a bus error.

There are two methods for stealing a memory location in the Butterfly II. One
method uses the AR, and the other uses the Process Configuration Register
(PCR). The latter method is described below in the section describing the
PCR. S '

A location can be stolen by setting the steal bit in the AR and performing an
augmentable write reference to the location. Note that the write will succeed
regardless of the current value of the tag; no error is generated by writing to a
stolen location. '

To determine that a location is not already stolen before stealing it, the user
must set the lock bit as well as the steal bit, and read from the location before
performing the write. Success in reading the location indicates that it is not
stolen (because reads from stolen locations terminate in bus errors), and lock-
ing the switch path ensures atomicity between the read and the write. [ISTHIS
OLD? ISN'T SETTING SNEAK AND LOOKING AT SNEAK DATA BET-
TER?] - ' ' ,

The synchronized access augmentation can be used by the bus error handler
when a read terminates in a “stolen” bus error. The bus error handler can re-
issue the read with the synchronized access bit of the AR asserted, signaling
the SIGA that the read should be tried again, but at a throttled rate. This pre-
vents the switch from being flooded with retries when a location is stolen and
multiple processors are waiting for it to be freed.

[NEEDS AN APPROXIMATE ANALYSIS OF WORST CASE.]

Sneak Augmentation

The bus error resulting from reading a stolen location can be overridden by
setting the sneak bit in the AR. If an operation terminates normally on the
T-bus (i.e., with COMPLETED) with the tag bit set, and the sneak augmenta-
tion is enabled, the CPU cycle terminates normally instead of with a bus error.
The tag information is stored in the sneak data bit in the PCR, discussed be-
low. '

The sneak augmentation can be used only on non-cacheable data because only
one bit of sneak data is preserved in a bus transaction. Cache-fill transactions,
generated automatically by the processor when accessing cacheable data, re-
quest four words of data, thus three bits of sneak data are lost in a cache fill

~ Attempting to sneak cacheable data results in an a bus error.

Draft: August 15, 1988 88BN AC!t Proprietary 245

~ 11: B2VME Function Card

11.6.9

11.6.10

11.7

246

Butterfly Il Hardware Architecture

Absolute Switch Priority Augmentation

The absolute priority augmentation overrides the priority scheme mechanism
described below in the section on default switch priority and priority schemes.
If either of the absolute priority augmentation bits in the AR is cleared to “0”,
the priority encoded in both of them is the switch priority of all the remote data
references until they are both set to “1” again. The absolute priority bits are
asserted low to conform with the T-bus specification.

Set Bank <1..0> Augmentation

The Butterfly IT addressing structure permits direct access to 8 megabytes of
memory at each remote node in a machine with 512 switch ports. In “small”
machines (those with 64 or fewer switch ports), the addressing structure per-
mits direct access to 32 megabytes. Refer to Burterfly IT Sysrem Architecture for
a complete description of the address structure, -

Setting bank bits <1..0> in the AR permits access to the remaining 24 mega-
bytes addressable on each node. Access to these three additional, 8~-megabyte

banks is controlled by three bits in the User Augmentation Enable Mask regis-

ter, so access to remote banks can be allowed on a per-bank basis. The bank
mask scheme is illustrated in Figure 11-5.

In a Butterfly Il machine with less than 64 switch ports, the bank bits override
the physical address bits. [CLARIFICATION OF THIS IS PENDING]

Figure 11-5. Remote bank mask scheme.

The Process Configuration Register

[THIS SECTION MAY MOVE TO THE FUNCTION BOARD CHAPTER.]

BBN ACI Proprietary Draft; August 15, 1988

= =

-P“’"‘ + -.‘.‘_._,_,. i -p-wu T -” b

Butterfly il Hardware Architecture. Sl : 11: B2VME Function Card

11.7.1.

11.7.2

11.7.3

The Process Configuration Register (PCR) is an 8-bit register containing in-
formation associated with the software process currently running on the proc-
€sSOT. -

Default Switch Priority and Priority Schemes

The prioﬁty bits on the T-bus are used by the SIGA to determine the switch
priority of a remote memory access. Each master on the T-bus must drive the
priority bits. The default priority of the messages sent can be set independ-
ently in each master interface.

In the CPU interface, the default priority may be different for different types of
messages. For example, a burst read may have a different priority than a single
read, and a steal may have a different priority than a sneak.

Adjusting the priority as a function of the message type is a feature of the But--
terfly IT architecture that was not available in the original Butterfly machine.

Consequently, a variety of priority schemes may need to be examined before an

optimal approach can be determined. In addition, dependent upon the appli-

cation, varying schemes may be required. To facilitate the testing and use of
different priority schemes, a hardware mechanism is provided to let the soft-

ware select a priority algorithm. The software may select from up to four dif-

ferent schemes programmable in the firmware of the machine,

Two bits in the PCR select the priority scheme to use. In addition, two bits
select the default priority. The default priority bits may or may not be used in
the priority scheme.

The Path Bits

The two path bits in the PCR select between the primary and secondary switch
networks available in a Butterfly II machine for remote references. Two bits
are used to also differentiate local accesses from switch accesses; this permits
local T-bus slaves to detect accesses without having to decode all of the upper
bits of the address. “11” indicates local access, “01” means SIGA A, and “10”
means SIGA B.

Sneak Data

The contents of the 33rd data bit resulting from a memory reference that was
augmented with a sneak can be found by reading bit 6 of the PCR. This loca-
tion is updated on every augmentable reference after the sneak bit has been set.

Draft: August 15, 1988 BBN AC! Proprietary 247

" 11: B2VME Function Card . ~ Butterfly Il Hardware Architecture

11.8

248

Timers

A variety of timers are available in the B2ZVME. The timers are provided to
guarantee maximum interrupt latency, to prevent inappropriate use of the
Lock and Disable Interrupts augmentations, to be used as a software tool, and
to detect faulty hardware. Table 11-2 is a table of the timers available on the
.B2VME, the range of each timer, a brief description of its function, and the
action taken if the timer expires. Each timer is described below.

BBN ACI Proprietary Draft: August 15, 1988

Butterﬂy il Hardware Architecture

11: B2VME Function Card

“Table 11-2. Timers in the B2VME.

Name and Range

Purpose

Action on Expiration

CPU Lock Timer
1 - 255 microseconds

Interrupts Disabled Timer
1 - 255 microseconds

Interrupts Pending /
Abort Retries Timer

1 - 255 microseconds

Reject Timer
1 microsecond -
0.49 seconds

Connection Timer
1 - 255 microseconds

Time Of Next Interrupt -

A
ﬂrﬂ%md -1 hour

Time Of Next Interrupt -

B
- (LEMBlond - 1 hour

VMEbus Arbiter Timer
4 ~ 1020 microseconds

VMEbus B2VME Mas-
ter Bus Timer
1 - 255 microseconds

~ VMEDbus System Bus Timer

4 - 1020 microseconds

LOCK AND INTERRUPT TIMERS

Litnit how long the
CPU
may hold a lock.

Help guarantee maxi-
mum
interrupt service latency.

Help guarantee maxi-
mum
interrupt service latency.

Generate a FREE_LOCKS cycle. CPU
will later get a “maintain present” error.

-Interrupt.

Signal SIGA to abort retries in case
connection establishment is in progress.

- CPU gets bus error if retries are

aborted.
SWITCH PROTOCOL TIMERS .
Prevent SIGA from trying " Bus error.
too long to establish a
connection.

Prevent switch connec-

tion from being held
open too long.

REAL TIME CLOCK TIMERS

Tear down connection. CPU
gets bus error — code and timing
depend on when timer expires.

Allow software to ask for

an interrupt at a specified
time.

Allow software to ask for
an interrupt at a specified
time.

VMEbus INTERFACE TIMERS

Interrupt.

Interrupt.

Limit how long VMEbus bus

grant may be asserted with-
out bus busy.

Limit how long the B2VME

as VMEbus master may await

a response from a slave.

Limit how long any
VMEbus master may await
a response from a slave.

Arbiter removes bus grant.

Remove VMEDbus signal address
strobe. Generate bus error on
T-bus.

Assért VMEDbus signal BERR.

Draft: August 15, 1988

BBN ACI Proprietary

249

11: B2VME Function Card Butterfly Il Hardware Architecture

11.8.1

11.8.2

11.8.3

11.8.4

250

Switch Reject Timer

The Switch Interface Gate Array (SIGA)implements a timer, called the switch
reject timer, that limits the maximum time spent trying to éstablish a path
through the Butterfly IT switch. The switch reject timer is enabled whenever a
remote memory access is attempted. The SIGA samples the state of this timer
whenever it receives a reject. If the timer has expired, the SIGA stops trying to
establish the connection, and a bus error is returned to the CPU. In normal
operation, the switch reject timer should not time out. Its expiration may indi-
cate broken hardware, or attempting to access a non-existent or disconnected
switch port. '

Switch Connection Timers

- The SIGA contains two switch protoéol timers: the Reject Tilﬁer and the Con-

nection Timer. These detect anomalies in switch message transactions. Expi-
ration of the Reject Timer is signaled on the B2ZVME’s T-bus as a bus error
with error code Rej_TO. 'Expiration of the Connection Timer similarly results
in a bus error with code Conn_TO or Wait_TO, depending on when during the
connection the timer expires. See the switch chapter for more details.

Lock Timer
[THIS SECTION MAY MOVE TO SWITCH CHAPTER.]

Every T-bus master that generates a lock requires a timer to prevent keeping a
slave locked too long. The B2ZVME has two masters that can generate locks:
the CPU interface and the VMEDbus slave/T-bus master interface. The CPU
interface has a timer that is enabled when the slave is locked and disabled when
the lock is freed. If the timer expires, a FREE_LOCKS cycle is generated, but
the master’s lock bit is not cleared. Thus, the CPU still considers itself to hold
the slave locked. If the CPU does not clear the lock before making another
reference to that slave, it will make a MAINTAIN access, because it will appear
to be locked. The slave will return an error because it will no longer be locked
because the FREE_LOCKS cycle was generated.

The VMEbus slave does not have a lock timer because the VMEbus lock ac-
cesses should always complete in two cycles.

Interrupt Pending

[THIS SECTION MAY MOVE TO SWITCH CHAPTER |

The time to establish a path through the Butterfly Il switch to a remote memory

can be large. When a CPU executes an instruction which makes a reference to

' BBN AC! Proprietary ' Draft: August 15, 1988

N

Butterfly Il Hardware Architectuirs PR - 11: B2VME Function Ca

remote memory, the instruction does not complete until the path has been es-
tablished through the switch, and the data has been read or written. Since in-
terrupts are serviced only between CPU instructions, they could be ignored for
longer than the maximum permitted delay to service interrupts, if the time to

establish the switch path was too long. The switch reject timer could address
this problem, but it would impose conflicting constraints on the- duration of
this timer. For detecting broken or missing hardware, the switch reject timer
should be set to a long timeout period. To guarantee maximum interrupt la-
tency, however, the switch reject timer would have to be set to a relatively short
(microseconds range) time. The “siga_abort_retries” input to the SIGA is
used to address this problem. o

When an interrupt is being requested of the processor, the abort retries finite
state machine is enabled. This state machine waits for a programmable period
of time, and then asserts the “siga_abort_retries” signal. The siga_abort_re-
tries signal is asserted only if the processor is currently waiting for an access to
complete. The time period can be specified from 1 to 255 microseconds, or
infinite. Setting the time to infinite disables the siga_abort_retries mechanism.

If the siga_abort_retries signal is asserted when the SIGA has received a reject,
the attempt to open the switch path (retry) is aborted and a bus error is re-
turned to the CPU. The interrupt can then be serviced, as the CPU is no longer
in the middle of an instruction. Using the interrupt request signal to abort
switch retries in this manner decouples the maximum switch latency from the
maximum latency to service an interrupt. Refer to the switch chapter for more
information about the switch reject timer and siga_abort_retries.

11.8.5 Interrupts Disabled Timer
[THIS SECTION MAY MOVE TO FUNCTION BOARD CHAPTER]

The interrupts disabled timer is enabled when interrupts to the processor are
disabled by the disable interrupts augmentation. This timer can be set by soft-
ware from 1 to 255 microseconds. This timer is used to ensure that interrupts
are not disabled so long that the maximum interrupt latency cannot be guaran-
teed. '

When the interrupts disabled timer expires, an interrupt is generated to the
CPU. The interrupt handler should clear the AR. Any locks associated with
the augmentation are freed by the T-bus FREE_LOCKS cycle that automati-
cally occurs when the lock bit changes from one to zero. -

11.8.6 Real Time Clock Interrupt (TONI)

Refer to the switch chapter.

Draft: August 15, 1988 . BBN AC| Proprietary 251

11.9

11; B2VME Function Card

Bus Errors

There are a variety of conditions in the Butterfly II machine that terminate
CPU cycles with a bus error. ‘Because the number of bus error conditions is
rather large, all bus error causes are prioritized and encoded. The 88000 can
read the encoded information and can use it as an offset into a dispatch tablein
the bus error handler. This mechanism is included to improve the bus error

service latency.

- Figure 11-6illustrates the encoding of the bus error information and also pro-
vides a cross reference of the sections in this document where each condition is

Butterfly Il Hardware Architecture

described. The error code is five bits, and appears in bits 6..2; error code bits 7,

]
(7
«Q

Priority is from highest (1) to lowest (8). -

1 and 0 are always “1”.
edcba
0 00 0 0 Maintain_Absent (1a)
0 0001 Maintain_Present (1ib)
¢ 0010 S5tolen Verify
0 0 01 1 Lock_Address (2)
00100 Wait_TO (4a)
00101 Idle TO (4b)
00 1.1 0 Rej_abort (5)
00111 Rej_TO (8)
01000 Reverse (7)
01001 Check (8)
01010

Miscellaneous CSU Error

Switch Requester ./ CSU Error = [THIS IS PER 7/7/88 LIST]

within a given priority, errors are mutually exclusive
(i.e., 4a,4b...).

b & Switch Server Error

cooco
N

43
o,
Q

T
ProOO
HOKRO

o
o

Downstream_Refused
Downstream Write
Downstream Late.
Downstream_ OTL

VMEbus Master/T-bus Slave

N]
000 o
OO0 0O
OO
RORrO

(o]

P

Vme Maintain_absent
Vme_Maintain_present
Vme_Burst_attempt
Vme_Bus_error

Local I/0

Sy
cCO0O0

252

=

= O

Local_lock_attempt
Local_burst_attempt

0 Local_load_ar_error

a Memory

BBN ACI Proprietary

N

_Draft: August 15, 1988

R D D R

1 %

= B = =3

ool S Czm

oon CuE

-

- I

S N S CWe SN S CED O

Butterfly It Hardware Architecture

-
—
oy
(o]
=]

Mem_Maintain_absent
1 Mem Maintain_present
11000 Mem_Parity_err

et
b
o
-

CPU Interface

@
o
o
o
w

CPU_sneak_on_cacheable
CPU_stolen
CPU_write_error
CPU_no_response

N
e
T HrOOO
(P
O MOH

[

O K
-
HOH
-
Sy

RESERVED
RESERVED?7??
1 01 1 1 RESERVED?7?

Switch Error Definitions:

Maintai'n_Absent
Maintain_Present
Stolen Verity
Lock_Address
Wait_TO

Idle_TO

Rej_Abort
Rej_TO.
Reverse

Check

Draft: August 15, 1988

11: B2VME Function Card

A NORMAL was issued to a slave dur-
ing its idle state and the slave was
locked.

A MAINTAIN was issued to a slave

" during its idle state and the slave was
. NOT locked.

m

A function request [EITHER READ
OR WRITE??7?] was made to a locked
requester during its idle state with a
node address different than that which
opened the locked sequence.

The switch connection timer expired
while the requester was waiting for a
function response.

The switch connection timer expired
while the requester was in its idle state.

The switch reject timer was forced to
expire by the the REJ_ABORT input
pin.

The switch reject timer expired while

' the requester was attempting to open a

connection.

The requester detected an incorrect
polarity of the reverse signal during a
function response.

The requester detected an incorrect
checksum during a function response.

BBN ACI Proprietary 253

11: B2VME Function Card | Butterfly Ii Hardware Architeciure

Downstream_Write A downstream write error was de-
- tected while the downstream server
was sending data.

Downstream OTL ' | A downstream T-bus slave did not re-
_ spond to the server’s request. .
 Downstream_Late : A downstream T-bus slave responded
with a LATE error.

Downstream_Refused A downstream T-bus slave responded
with REFUSED-LOCKED when the
server thought itself locked.

CSU Error o An error was made accessing the CSU.
- It could be one or both of the of the fol-
lowing: -
1) An OPEN lock was requested.
2) A Multi-word transfer was re-
quested.

[ABOVE DESCRIPTIONS ARE. SIGA ONLY. NEED OTHERS TOO.]
| Figure 11-6. Bus error encoding.

11.10 Registers by Functional Group

The registers described here are accessible by any T-bus master on the board.

The T-bus slave interface for these status and configuration registers responds

for all of the B2ZVME registers except the VMEbus mapper RAMs {both mas-

ter and slave) and the interleaver RAM. These devices are loaded by the
 SIGA-assisted interleaver loader, discussed below.

The registers are described in five groups, divided roughly by function. The
groups are:

e User and configuration registers — control process state and configura-
tion of the machine

o Interrupt system registers — involved with interrupts within the machine
o Bus error registers — indicate the source of a bus error
e Latency control registers — timers that prevént hangups

e VMEDbus interface registers — involved with VMEbus operation, includ-
ing VMEDbus interrupts and timers

[THE FOLLOWING SUBSECTIONS NEED SOME POLISHING. IN |
CASE OF DISCREPANCY WITH THE REGISTER LIST IN THE LAST

- SECTION, THE REGISTER LIST SHOULD BE BELIEVED.]

254 BBN ACI Propristary Draft: August 15, 1988

-.... i -..,, i -,..,,.. X _I'*'-‘ i -’mr i

Butterfly Il Hardware Architecture 11: B2VME Function Card

11.10.1

User and Configuration Registers

User Registers

The B2VME has three user-accessible registers: the inrerprocessorr interrupt
register, the process configuration register and the augmentation register block.
[ALSO LIGHTWEIGHT STEAL.] Each of these registers resides onits own

- page to provide maximum flexibility for the operating system in permitting

each individual process to access these registers. The interprocessor interrupt
register also resides in a globally accessible page (bank 0), znd thus it can be
accessed remotely without an augmentation. The PCR and AR Block are in-
tended for use by the local processor, and thus they do not reside on globally
accessible pages. Every bit in these registers is covered by a mask bit. At-
tempts to set a bit that is masked in any of these registers returns a register load
error. The PCR and Interprocessor Interrupt registers are read/write. The AR
Block is read only, although reads of the AR Block resuit in the setting and
clearing of its contents.

Except for the user registers noted above, all registers are intended to be acces-
sible by privileged processes only. The page where these registers reside
should be mapped in supervisor address space.

Process Context

The process context must be saved and restored upon servicing interrupts and
process switching. In addition to the normally required 88000 context, the
B2VME contains registers that are part of the process context and must be
saved, cleared and restored appropriately. These are listed below.

. Augmentaﬁon register (AR)
e Process Configuration register (PCR)
o Lightweight Steal register

e User Augmentation Enable Mask register, if its contents vary from proc- -
ess to process '

e PCR Disable Mask register, if its contents vary from process to process

Augmentétion Register (read/writé)

The Augmentation Register (AR) can be read and written as data at location
0xE0780004. You can also load the AR by reading the AR block with bits 13.2
set to correspond to the AR bits that you want to set.

Draft: Adéust 15, 1988 BBN ACI Proprietary ' 255

* 11: B2VME Function Card _ Butterfly Il Hardware Architecture

266

Loading the Augmentation Register

The AR appears in several locations in the local addréss space. Accessing the

AR at different locations produces different side effects. These side effects

allow efficient use of the AR during normal operation and during exception
processing, '

The AR resides in a 16-kilobyte block of memory called the AR block. Bits
15..2 in the address of an AR block reference represent augmentations. Read-
ing a location in the AR block enables the augmentations whose bits in the
address are “1”. For example, referring to Figure 11-8, reading location
OxE(758400 enables the lock augmentation. Reading location 0xE075A400 en-
ables lock and steal :

| The AR is cleared either by reading from location zero of the AR block, or by

reading from the AR read and clear register. Reading the AR read and clear
register returns the contents of the AR and clears it. The contents of the AR
can be read without clearing it by reading the AR Read Register.

The AR is part of the state of the current process, and thus it must be saved and
restored when the CPU is processing exceptions. An efficient way to imple-
ment this is to read the AR from the AR read and clear address at the begin-
ning of the exception handler. At the end of the exception handler, the AR
value can be loaded back into the AR by writing it to the AR read/write regis-
ter. :

A map of the AR registers and other B2ZVME registers is illustrated in the sec-
tion on configuration and control registers.

Augmentation Register Read and Clear (read)

Reading this register returns the contents of the AR and clears it. This register

is intended for use by exception handling softwarc to efficiently save the state

of the AR, and clear it.

User Augmentation Enable Mask Register (read/write)

The Augmentation Register Mask is applied to reads of the AR block. Itis not
applied to the Augmentation Register itself because that register resides in a
privileged page to which users will not have access, thus it does not need to be
protected by the mask, ' :

If an AR block access attempts to set a bit that is masked, a register load error
is returned. The bit gets set, and it is the responsibility of the bus error handler
to clear it. :

In some environments, the operating system may want to give a user processes
access to a subset of the augmentations available, but not to all of them. But,

BBN ACI Proprietary Draft: August 15, 1988

[y

Butterfly Il Hardware Architecture 7 11: B2VME Function Card

because the entire AR block resides in two pages of memory, the operating
system has very little granularity with which to control access to the AR. Ifthe
augmentation register is mapped into user space at all, the user has access to
many of the augmentations.

The User Augmentation Enable Mask is applied to the AR to control user

process access to each bit in the AR. If the mask bit is “1” for a given AR bit,
then the user is permitted to enable the augmentation. If the mask bit is “07,

then attempts by a user process to set the AR bit result in a bus error.

The User Augmentation Enable Mask is initialized by power-up to all zeros. It
resides in a page of registers intended only for supervisor access. The AR
read-and-clear and AR read/write registers are also in this page of registers.

Lightweight Steal

Using the augmentation register to steal memory locations requires a large
overhead of instructions for turning on the AR bits in the right sequence with
turning off interrupts. To address this problem, the Butterfly II architecture
includes an alternate method for steal that requires very little overhead.

Setting the lightweight steal bit in the Lightweight Steal register causes the next
XMEM instruction to turn into a steal. Recall that the XMEM instruction
automatically generates a T-bus lock that is freed when the write completes. If

the read portion of the XMEM completes, then the location is not stolen, and

the write portion steals the location. The lightweight steal register is cleared
when a steal occurs; thus, clearing the register is not necessary.

'Process-Configuration register (P_CR) (read/write)

_ The PCR holds information about the way remote accesses are presented to

the switch while the current process is executing. It also contains the sneak data
bit, which is how the process obtains part of the result of a sneak access, an
augmentation that circumvents a lock.

PCR Disable Mask (read/write)
The Process Configuration register also resides in a page that may be mapped

user accessible. Each bit in the PCR is covered by a mask bit. Attempts to
write to a masked bit result in a register load error.

Draft: August 15, 1988 BBN ACI Proprietary ' 257

11: B&VME Function Card

11.10.2

11.10.3

258

Butterfly 1| Hardware Architecture

Machine Configuration (read/partial Write)

* This register has one bit, the machine size bit, that indicates whether to use

small (less than 64 switch ports) or large (64 to 512 switch ports) machine ad-
dressing. The small machine contains a 2-column switch, while the large ma-
chine has a 3-column switch. This bit can be read back, and also the switch
port number where the board is plugged in can be read through this register.

Interrupt System Reglsters'

Interrupt Mask (read/write)

The upper seven bits of the Interrupt Mask are applied to incoming VMEbus
interrupts. If an interrupt is masked, it will not generate an interrupt to the
88000. Bit 0 of the Interrupt Mask is applied to the Interprocessor Interrupt
register. If a user attempts to set the interrupt bit when it is masked, a register
load error is returned.

Interprocessor Interrupt (read/write)

This one-bit register can be set to generate an interrupt fo the processor. Itis
cleared by reading the Interrupt Source register, or by writing a zero to the
Interprocessor Interrupt register.

Non-maskable Interprocessor Interrupt (read/write)

This one-bit register can be set to generate a non-maskable interrupt to the
processor. Itis cleared by reading the Interrupt Source register, or by writing a
zero to the Non-maskable Interprocessor Interrupt register.

Interrupt Source (read)

The current sources of interrupts are partially encoded and recorded in this
register.

Bus Error Registers

Bus Error Vector (read)

The 5-bit encoded source of the most recent bus error to the CPU is recorded
in this register. See the section on bus errors for the encoding of these bits.

'BBN ACI Proprietary Draft: August 15, 1988

= o R B I

n

Butterfly I Hardware Architecture 11: B2VME Function Card

11.10.4

11.10.5

Write‘ Error Source (read)

When an error is returned to the CPU on a write, the slave cannot always sup-
ply an error code because the CPU may still be driving the T-bus with write
data. In this case, the source of the write error, and some of the state, are stored
in this register to aid in determining the type of error that occurred. Note that
not alt error bits apply to each bus slave.

‘Latency Control Registers

CPU Lock Timer (write)

The CPU Lock Timer register is loaded with the 8-bit number #, where Oxff-fis
the number of microseconds before the CPU lock is timed out. '

Intei'rupts Disabled Timer (write)

The Interrupts Disabled Timer register is loaded with the 8-bit number ¢,
where Oxff-f is the number of microseconds before an interrupt is generated
because interrupts have been disabled for too long. ‘

interrupts Pending/Abort Retries Timer (write/partial read)

Bits 8..1 of the Interrupts Pending/Abort Retries Timer register represent the
number ¢, where Oxff- is the number of microseconds an interrupt must be
pending before it causes switch accesses to be aborted. If bit Qs set, the time is
infinite, and the timer is effectively disabled. Only bit 0 can be read back.

VMEbus Interface Registers

Six registers configure and control the VMEDbus interface.

VMEbus Configuration (read/pa’rtial write)

The VMEbus Configuration register selects the 4-megabyte window in the
VMEbus space to which the B2VME VMEDbus slave interface will respond.
Also, it selects whether the B2ZVME responds to VMEbus standard or ex-

tended address format.

The VMEbus Configuration register also controls whether the B2ZVME
VMEbus master interface uses a release-on-request or release-when-done
requester.

Finally, the reset VMEbus bit generates 2 VMEbus reset.

Draft: August 15, 1988 BBN ACI Proprietary . 258

11: B2VME Function Card * Butterfly Il Hardware Architecture

260

All of the above bits can be read back, and additionally, the status of the

VMEDbus system reset and system fail signals are monitored by reading this reg-
ister.

' VMEbus Arbiter Timer

The VMEDbus system controller must time out two signals on the VMEbus: bus
grant and address strobe.

If the arbiter grants the bus by asserting bus grant, and no master responds by
asserting bus busy, the arbiter timer must indicate to the arbiter that no device
has responded and therefore the grant should be removed. This situation
should never occur if all devices are designed according to The VMEbus Speci-
fication, but timing it out allows forward progress if it does occur.

The VMEbus Arbiter Timer register is loaded with the 8-bit number 7, where
Oxff-z is (the number of microseconds)/4 before an arbitration cycle is timed
out. This timer is applied to the arbiter bus grant and is disabled as soon as a
VMEbus master acknowledges the grant. Under normal operation, this timer
should never expire.

This used only when the B2VME is VMEbus system controlier,

VMEbus System Bus Timer

If address strobe is asserted and no slave device responds with the VMEbus
signal DTACK, the system controller must time out address strobe by assert-
ing BERR. This situation occurs more frequently than timing out bus grant.
For example, on system power-up, a CPU may wish to poll the bus to find
available memory. The address strobe timer can be set by software from 4 to
1000 microseconds.

The VMEbus Bus Timer register is loaded with the 8-bit number ¢, where
Oxff—t is (the number of microseconds)/4 before a VMEbus access is timed out.
This timer is applied to the VMEbus address strobe, and thus affects all
VMEDbus transactions.

VMEDbus B2VME Master Bus Timer

The VMEbus B2VME Master Bus Timer register is loaded with the 8-bit
number ¢, where Oxff-f is the number of microseconds before a VMEbus access
initiated by the BZVME VMEbus master interface is timed out. This timer
prevents the maximum switch latency of the Butterﬂy II machine from being
affected by long VMEbus timeouts.

The VMEDbus System Bus Timer, described above, times out the whole
VMEbus. The B2VME Master Bus Timer only times out references initiated

‘B8N ACI Proprietary ‘ Draft: August 15, 1988

Butterfly Il Hardware Architecture : 11: B2VME Function Card

11.11

by the BZVME's VMEbus master interface. This one is set short; the system
one is set long.

VMEbus Interrupt Generator Registers

The VMEbus interrupt generator chip (SCB68154) used by the BZVME con-
tains a register to set the interrupt level requested, and a register to supply an
interrupt vector. Both of these registers are read/write, and are described
schematically in the register list here, and in detail in the 1986 Signetics Micro-
processor Manual. :

Register Address Map

[HERE SHOULD BE A LIST OF ALL REGISTERS, INCLUDING SIGA
REGISTERS, SORTED BY ADDRESS.]

0x00000000 to 0x0000FFFF Debug daughter board, if installed (see Debug Connector sec-

0x80002000
0xE0740000
0xE0741000

tion); if no daughter board is installed, this is normal memory
Interprocessor Interrupt register

Process Configuration register (PCR)

Lightweight Steal register

B 0xE0758000 to 0xE075BFFC Augmentation register, as AR block

0xE0760000

0xE0760004

0xE0760008

OXE0760200
(XEQ760204
OxE0760208
OXE076020C
OXE0760800
OxE0760804

Machine Configuration Read régister (on read)
Machine Configuration Write register (on write)

Non-maskable Interprocessor Interrupt register
Interrupts Pending / Abort Retries Timer register
VMEbus B2ZVME Master Bus Timer register
VMEDbus Configuration register

VMEDbus System Bus Timer register

VMEbus Arbiter Timer register

VMEbus Interrupt Vector / Control register
VMEbus Interrupt Request register

0xE0761000 to 0xE0761FFF VMEbus Slave Map RAM registers (no T-bus access)

E&ugmentation register, as AR read-and—clear (on readB WSM}@.& + EQ&”@C—

O0xE0780000
CPU Lock Timer register (on write)
0xE0780004 -Augmentation register, as AR read/write
Draft: August 15, 1988 BBN ACI Proprietary 261

11: B2VME Function Card

Butterfly li Hardware Architecture

0xE0780008 User Augmentation Enable Mask register
0xE0Q78000C Bus Exror Vector register
0xE0780010 ' PCR Disable Mask register
0xE0780014 Interrupt Enable Mask register
OxE0780018 Interrupt Source register (on teé.d)
Interrupts Disabled Timer register (on write)
0xE078001C - Write Error register'[l\m-ﬁmﬁ\COMBINED WITH BUS ERROR VEC-
' TOR REGISTER] o o
OXEQ7E0000 RTC (Rea! Time Clock) Control A register
OxEQ7E0004 TONI (Time Of Next Interrupt) A register
OxEQ7ES000 RTC (Real Time Clock) register
OxEO7TES004 Transmit Time Configuration register
OXEO7ES008 Message Classification register
0xEQ7ES00C Timer Configuration register
0xE0Q7E8010 Frame Timer register |
0xE07ES8014 Server Connection Timer register
0xE07E8018 Priority Promotioh Timer register
0xE07E8020 ‘Switch Message Checksum register
0xE07E8024 Switch Port Control / Interleave Control register
0xEQ7E8028 Synchronizer Delays register
0<E07ES802C _ Primary / Secondary Control register
..... other SIGA registers
OxE07A0000 to 0xEQ07A1FFF Interieaver / VMEbus Master Map RAM Read/Write
Control registers
..... SIGA B registers, as SIGA A registers above but using pages x through y
Figure 11-7. B2VME T-bus registers.
11.12 B2VME Flegister Summary
Certain registers are present in BZVME function board hardware, but are de-
scribed in other chapters or other documents. These are:
e CPU and CMMU registers. These are described in Motorola literature,
¢ 'Test and Control System (TCS) slave régisters. These are described in the
TCS chapter. [I AM NOT SURE WHAT I MEAN HERE.]
- 262 BBN ACI Proprietary Draft: August 15, 1988

e =

T B

Butterfty || Hardware Architecture-

11; B2VME Function Card

e SIGA control and configuration registers. These are described in the
TCS chapter or the switch chapter. [I HAVE TO DECIDE WHICH.]

The B2VME registers described here are accessed via the T-bus, except the
three RAMs noted. The registers are:

o Non-VMEbus B2VME control and configuration registers:

(o]

e}

o]

o

O

Augmentation register (AR)

Bus Error Vector register (and Write Error register)
CPU Lock Timer register '
Interleaver RAM registers (no T-bus access)
Interprocessor Interrupt register

Interrupt Enable Mask register

Interrupt Source register

Interrupts Disabled Timer register

Interrupts Pending / Abort Retries Timer register
Lightweight Steal register

Machine Configuration Read register, and
Machine Configuration Write register

Non-maskable Interprocessor Interrupt register
PCR Disable Mask register
Process Configuration register (PCR)

User Augmentation Enable Mask register

¢ B2VME VMEbus interface registers:

Draft: August 15, 1988

o]

O

o)

VMEDbus Arbiter Timer register

VMEbus B2VME Master Bus Timer register

VMEbus Configuration register

VMEDbus Interrupt Request register

VMEbus Interrupt Vector / Control register

VMEbus Master Map RAM registers (no T-bus access)
VMEbus Slave Map RAM registers (no T-bus access)
VMEbus System Bus Timer register

(also, the Interrupt Enable Mask register and the Interrupt Source
register contain VMEbus-related fields)

BBN ACI Proprietary 263

11: B2VME Function Card oo Butterfly il Hardware Architecture

Each of these registers, in alphabetical order, is summarized below. Registers
in this summary should be accessed as word (32-bit) quantities, aligned on
word boundaries, even if the only meaningfu! bits lie in an upper byte of the
word. The values of unused bits are irrelevant (don’t care) on a Wnte, and are

unspecified on a read.

The B2VME registers described here are intended for write access by privi-
leged processes only, typically supervisor mode only, with three exceptions.
The three user-writable registers are the Augmentation register (accessed as
the AR block), the Interprocessor Interrupt register and the Process Configu-
ration register. [ALSO LIGHTWEIGHT STEAL???] The hardware does not
enforce any register access restrictions explicitly based on the CPU mode (su-
pervisor, user). Instead, it is up to the software to map the registers to-pages
with appropriate access protection. Further, writing to each field in the three
user-writable registers is protected by a mask bit in an associated mask regis-
ter. Thus, to access a register, the register must be mapped to permit access in
the current mode; and if the register is protected by a mask and the operation is
a write, that mask must be set to permit access also.

The description of each register includes its contents after power-on. The TCS

power-up operation modifies the contents of several registers, some of which
depend on the configuration of the system. See TCS user orsite admlmstratlon

- documentation for those details.

- 264

BBN AC! Proprietary : ~ Draft: August 15, 1988

oE CHe CEN e DW SN

— B -

— B N

Butterfly il Hardware Architecture -~ ' 11: B2VME Function Card

31 15 14 13 12j11 .10 9 8|_7 6 5 41 3210

| unused I : |—-l——unusr—zd

bank <1..0>
absolute priority <1..0>
unused (always 1)
disable interrupts
exception action<1..0>

— lock

— sneak

— synchronized access
— steal

Figure 11-8. Augmentation register (AR).
FUNCTION Enable augmentations to 88000 CPU instructions.

ADDRESS (xE0758000 to OxEQ75BFFC — AR block
' OxE0780000 — AR read-and-clear (CPU Lock Timer reglster on write)
OxE0780004 — AR read/write

ACCESS AR block — read only, with side effects, subject to User Augmentation
' Enable Mask register
AR read-and-clear — read only, with side effects
AR read/write — read/write

DESCRIPTION - There is just one Augmentation register, and it may be referenced in three
ways. Itis intended that the operating system permit user-mode access to
the AR only via the AR block. '

¢ Readinga(word-aligned)location in the AR block causes bits 13..2 of the
' address to be loaded into bits 13..2 of the AR. The data returned in bits
31..16 is unspecified, and in bits 15.0 is all ones. WARNING: WHAT
DATA IS RETURNED MAY BE REVISED. Writing to the AR block

has the same effect as reading it; the write data is ignored.

] Rcading the AR read-and—clear location returns the contents of the AR
and clears the AR to zero.

e Accessed at the AR read/write location, the AR may be read without
clearing it, and may be written.

The bank bits permit access to the high 24 megabytes of the 32 megabytes
of address space on remote nodes of a large machine. Ona small machine,
the bank bits override certain physical address bits. [NEEDS CLARIFI-

CATION|]

Draft: August 15, 1988 BBN ACI Proprietary | 265

11: B2VME Function Card Butterfly Il Hardware Architecture

The absolute priority bits define a value to override the priority scheme bits
of the Process Configuration register. These bits determine the priority of
switch messages; see the PCR description and the switch chapter for de-
tails. If the absolute priority < 1..0> bits of the AR are...
-0 0 then T PRIORITY<1.0> =00 ‘

0 1 thenT PRIORITY<1.0> =0 1

1 0 then T PRIORITY<1.0> =1 0

1 1 then T PRIORITY<1.0> = as determined by PCR

The disable interrupts bit, when set to one, prevents assertion of the CPU’s
interrupt request pin. Requests already in the CPU’s internal pipeline are
not disabled. Interrupts from the VMEbus, from the real time clock tim-
er(s), and from the maskable interprocessor interrupt are disabled by this
bit. Two interrupts are net disabled by this bit: the interrupts disabled too
long timeout, and the non-maskable interprocessor interrupt.

The exception action bits describe what action to take at the end of excep-
tion processing. The hardware does not use these bits; they are provided

- for use by software, to tell the exception handler software what to do. Their
meaning is only a programming convention, although “00” should mean

“continue” because the AR is cleared to zero upon power-up.
0 0 continue (proceed normally)
0 1 restart (Tesume instruction at restart address)
1 0 abort (getting any exception is fatal to the process)
1 1 undefined

The lock bit, when set to one, causes the path to the resource that will be

accessed, and the resource itself, to be held open after the access has com- -
_pleted. Changing the lock bit from “1” to “0” generates a T-bus

FREE_LOCKS cycle if a resource has been locked.

The sneak bit, when set to one, makes read operations immune to whether
the location read is stolen; the read operates normally instead of causing a

~ bus error. The sneak bit has no effect on reading non-stolen locations.

The synchronized access bit, when set to one, asserts the T-bus bit T_SYNC
on switch transactions, which tells the SIGA to use “Slot0” transmission

strategy. The intent is that the SIGA will be set up so this causes initial

switch transmissions to use a delay similar to the backoff applied to
retransmissions. Then, if several CPUs are all accessing the same server,

congestion is less than if transmission were not delayed. [NEEDS CLARI-

FICATION]

The steal bit of the AR, when set to one, causes augmentable write refer-
ences to steal the location referenced, If the write succeeds, it sets the steal
bit on the stolen location; that bit indicates that the location is stolen. Writ-
ing to an already stolen location is allowed. See also the Lightweight Steal
register. : ; _

Power-on clears all defined bits of the Augmentation register to zero.

266

BBN ACI Proprietary Draft: August 15, 1988

Butterfly il Hardware Architecture’ ~ . © PR 11: B2VME Function Card

31 15141312]1110987654;3210

unused

31

write error unused error code unused
code - from T-bus

7 65 43 210

I N I |
unused (always 1)

unused

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

- arror code from T-bus
unused (always 1) '

31 765 43210
||

I _
I__I |—— u— unused (always 1)

unused

—— write error code
unused (always 1) -

Figure 11-9. Bus Error Vector register.
Indicate the cause of a bus error. e, v (R Stex et Ll G Eneed 20
OxEQ78000C (Wirite Etror register is at 0xE078001€C) ok O BUROTOL.
read only

An operation initiated by the CPU may result in an error detected by a
T-bus slave. In the B2VME, these slaves are the memory, the SIGAs, the
VMEbus master interface, and the status and configuration registers. The
slave indicates the error by responding with an error reply (T-bus control
bits T_RR <2..1> are 000) and, if possible, placing a code describing the
error on the T-bus data wires. The CPU interface conveys this to the
CMMU as an M-bus (memory bus) error, and the CMMU in turn conveys
the error to the CPU, which receives it as an M-bus error exception. The
error description code placed on the T-bus is captured in the Bus Error
Vector register, for use by software handling the exception. Thus, the Bus
Error Vector register contains the error code for the most recent bus error

Draft: August 15, 1988 ' BBN ACI Proprietary 267

11: B2VME Function Card ' Butterfly il Hardware Architecture

to the CPU. If there has been no such error, the contents of the register are
undefined.

If the error regards a write operation for which the CPU is currently driv-
ing data onto the T-bus (that is, a non-split cycle write), then the error de-
scription code cannot be placed on the T-bus at the same time. In this

- case, an error description code is captured in the Write Error register, and

THIS IS OLD!!!

the Bus Error Vector register is loaded with a code that indicates the real
error code is in the Write Error register. Thus, the Write Error register
contains the error code for the most recent bus error to the CPU, if the Bus
Error Vector register so indicates. Otherwise, the contents of the register
are undefined. S '

NOTE: The Write Error register may be incorporated into the Bus Error
Vector register, as bits 15..8 thereof.

The Bus Error Vector register error codes are:

The Write Error register error codes are:.

access to VMEbus master/T-bus slave

access to local [MEMORY?77]

access to [REMOTE???) memory

VMEbus or memory is locked

attempt to burst read or write (not a memory error)
attempt to open or maintain a lock

attempt to set a masked bit (local only)

attempt to steal a location (not a memory error)

After_pdwer—on, the contents of the Bus Error Vector register is unspeci-
fied,

268

BBN ACI Proprietary " Draft: August 15, 1988

. LY

_ Butterfly i Hardware Architecturé

FUNCTION
ADDRESS
ACCESS .
DESCRIPTION

.. 11: B2VME Function Card

a2 |
|

unused | t

Figure 11-10. CPU Lock Timer register.
Limit how long the CPU may hoid a lock.
OxE0780000

write only ﬁm-mad-and:cteans-at—t»his—aédfess-omgd)—— 9-13 oo

When the CPU interface to the T-bus generates a locked transaction, the
CPU Lock Timer is loaded from this register and begins counting. It stops
when the CPU interface frees the lock. If the timer expires, the CPU is not
explicitly notified, but a FREE_LOCKS cycle is automaticaily generated.
The CPU’s T-bus master interface, however, still believes the lock is held.
If the CPU references the locked location without first freeing the lock, the
reference will be a MAINTAIN access, to which the slave will return a
“maintain present” error.

A CPU lock is timed out after 0xFF—~f microseconds, where ¢ is the contents
of the CPU Lock Timer register; the contents of the timer itself are not ac-
cessible to software., : :

After power—on, the contents of the CPU Lock Timer register is unspeci-
fied.

Draft: August 15, 1988 ' BBN ACI Proprietary 269

11: B&VME Function Card 3 Butterfly Il Hardware Architecture

FUNCTION
ADDRESS

ACCESS
DESCRIPTION

9

Figure 11-11. Interleaver RAM registers.

Reduce contention for access to memory by distributing addresses among
different function boards.

0xE07A0000 — OxEQ7AIFFF (shared with VMEbus Master Map RAM
and write control registers???) - '

‘read/write??? .

When the BZVME generates a remote reference (and therefore a switch
request), system physical addresses from the T-bus are translated into
{WHAT NAME??? modified??? interleaved???] addresses by the inte-
rleaver, using these registers. The ten??? bits T_AD <22..13> 777 select
one of 1024??? Interleaver RAM registers, whose bits then supply bits
{?777) of the [?77] address as indicated. The [???] pin on the SIGA controls
whether the SIGA uses the unmodified address straight from the T-bus or
the address as modified by bits from the interleaver.

These registers are located in SIGA register space because the interleaver
loader mechanism is used to load them.

After power-on, the contents of the Interleaver RAM registers is unspeci-
fied. :

270

BBN ACI Proprietary Draft: August 15, 1988

" Butterfly 1l Hardware Architecture : 11: B2VME Function Card

l L interprocessor interrupt
unused -

Figure 11-12. Interprocessbr Interrupt register.
FUNCTION Interrupt the CPU. |

ADDRESS 0x80002000 (ir bank 0, so accessible remotely without an augmentation),
subject to Interrupt Enable Mask register
ACCESS read/write

DESCRIPTION Setting the interprocessor interrupt bit in this register generates an interrupt
to the CPU. This register can be written across the switch, so any other
processor may interrupt this CPU, subject to the Interrupt Enable Mask -
register. It is expected that the operating system will impose further con-
straints on writing to this register. This bit is cleared either by writinga “0”
into it, or by reading the Interrupt Source register. '

Power—on clears the one defined bit of the Interprocessor Interrupt regis-
ter to zero.

Draft: August 15, 1988 BBN ACI Proprietary 27

. 11: B2VME Function Card - Buttertly Il Hardware Architecture

7 6 543210

710615, 4181211

unused

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

l_'— interprocessor interrupt
VMEbus level 1
VMEbus level 2
VMEbus level 3
VMEDbus level 4
VMEDbus level 5
VMEDbus level 6

VMEbus level 7

Figure 11-13. Interrupt Enable Mask register.
Enable interprocessor and VMEbus interrupts to the CPU.
0xE0780014 -

| read/write

If a VMEbus mask bit in this register is “1”, then the corresponding inter-
rupt, if asserted, is recognized by the CPU. If a VMEbus mask bit is “0”,
then the CPU is insensitive to assertion of the VMEbus interrupt request
on that level. The VMEDbus interrupt request state is not latched in the
B2VME; if the enable bit for a level is “1”, the state seen by the CPU shows
whether any VMEbus device (including the B2ZVME) is currently asserting
a request on that level. VMEbus devices collectively assert and de-assert
the VMEbus interrupt request level signals. The mask bits determine
whether these signals can interrupt the B2VME CPU.

If the interprocessor interrupt mask bit is “1”, writing to the Interprocessor

Interrupt register is permitted. If the bit is “0”, then an attempt to write to
the Interprocessor Interrupt register returns a register load error instead.
Clearing the mask bit in the Interrupt Enable Mask register to “0” does not
clear or disable the Interprocessor Interrupt register, so if an interrupt was
already pending it remains so.

~ Power-on clears all defined bits of the Interrupt Enable Mask register to
2Z€r0, 50 the interrupts masked by this register are disabled.

272

BBN ACI Proprietary Draft: August 15, 1988

Butterfly Il Hardware Architecture 11: B2VME Function Card

7654,-3210

L1

L

unused

-,.. : -‘p | -h-— - -m i

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

i

rsie— |

| I L. VMEbus interrupt
VMEbus interrupt leve!
(001 = level 1,
010 = level 2, etc.)
non-maskable interprocessor interrupt

‘— maskable interprocessor interrupt
— real-time clock interrupt (the OR of al! four)

L interrupts disabled too long timeout

Figure 11-14. Interrupt Source register.
Indicate the cause of a-CPU interrupt.
0xE0780018
read only (Interrupts Disabled Timer value is at this address on write)

There are fourteen sources of interrupts on the B2ZVME. The 88100 has
only one interrupt level, so all interrupt sources are OR’ed together to gen-
erate a CPU interrupt. More than one type of interrupt may be asserted.
Only the VMEDbus interrupts are prioritized.

The VMEbus interrupt bit, if “1”, indicates that at least one VMEbus inter-
rupt request level is asserted. These levels are prioritized, and the VM Ebus
interrupt level bits indicate the level of the highest priority request currently
asserted. If the VMEbus interrupt bit is “0”, the contents of the VMEbus
interrupt level bits is unspecified.

The non-maskable interprocessor interrupt bit, if “1”, indicates that the in-
terrupt bit of the Non-maskable Interprocessor Interrupt register has
been set to “1”.

The maskable interprocessor interrupt bit, if 17, indicates that the interrupt
bit of the Interprocessor Interrupt register has been set to “1”.

The real-time clock interrupt bit, if “1”, indicates that one or both of the
Time Of Next Interrupt (TONI) registers, in one or both of the SIGAs, has
expired. Each SIGA has two real-time timers, but in normal operation,
only one SIGA will be producing such interrupts.

The interrupts disabled too long timeout bit, if “1”, indicates that the Inter-
rupts Disabled Timer has expired.

Draft; August 15, 1988 BBN ACI Proprietary 73

11: B2VME Function Card " Butterfly i Hardware Architecture

PROGRAMMING ADVICE: Reading the Interrupt Source register
clears both the non-maskable and the maskable interprocessor interrupts,
The software should then save the state of the AR and PCR. The AR
should then be cleared. The AR can be read and cleared in one access
using the AR read-and-clear address. The interrupts disabled too long
timeout will be cleared within 3 microseconds of clearing the AR. The
VMEDbus interrupt(s) get cleared by doing an IACK cycle on the VMEbus.
The. request at each asserted level must be given a separate IACK re-
sponse. The real time clock interrupt is cleared by writing a value greater
than the current time to the SIGA's TONI register that interrupted, or by
changing that SIGA's configuration register to disable TONI interrupts.

Interrupts from the VMEDbus and from the Interprocessor Interrupt regis-
ter are maskable via the Interrupt Enable Mask register. Interrupts from

“the real-time clock are maskable via the configuration register in the

SIGA. However, interrupts from the Non-maskable Interprocessor Inter-
rupt register and from the Interrupts Disabled Timer are not maskable by
the BZVME interrupt support circuitry; they will interrupt the CPU unless
the CPU has turned off interrupts internally.

After power-on, the contents of the Interrupt Source register is unspeci-
fied.

274

BBN ACI Proprietary Draft: August 15, 1988

Butterfly Hl Hardware Architecture ' 11: B2VME Function Card

31 (765 43210

L]

unused

Figure 11-15. Interrupts Disabled Timer register.

FUNCTION

ADDRESS
ACCESS
DESCRIPTION

Help guarantee maximum latency of interrupt servicing, by detectmg pro-
tracted use of the disable mterrupts augmentation.

O0xE0780018
write only (Interrupt Source register is at this address on read)

When the Augmentation register disable interrupts bit is set to one, the In-
terrupts Disabled Timer is loaded from this register and begins counting.
It stops when the disable interrupts bit is cleared to zero. If the timer ex-
pires, an “interrupts disabled too long” interrupt is generated. That inter-
rupt is cleared by clearing the disable interrupts bit in the AR.

The interrupts disabled augmentation is timed out after 0xXFF-¢ microsec-
onds, where ¢ is the contents of the Interrupts Disabled Timer register; the

“contents of the timer itself are not accessible to software.

After power-on, the contents of the Interrupts Disabled Timer register is
unspecified.

Draft: August 15, 1888 BBN ACI Proprietary 275

11: B2VME Function Card

ADDRESS

31

15 14 13 121110 9 8, 7 6 5 4,3 2 1 0

- Butterfly Il Hardware Architecture

- A R S N I I T
|| | ’I—disable

ACCESS

DESCRIPTION

unused t (write only)

Figuré 11-16. Interrupts Pending / Abort Retries register.
FUNCTION

Help guarantee maximum latency of interrupt servicing, by detecting delay
in switch transactions.

0xE0760008
write (all bits) / partial read (the disable bit only)

When a CPU interrupt request is asserted, a timer is loaded from the Inter-
rupts Pending / Abort Retries register and begins counting. It stops when

all interrupt requests are gone. If the timer expires, the signal

SIGA_ABORT_RETRIES is asserted. This signal is an input to the
SIGA, and, if asserted when the SIGA makes a retry attempt to establish a
switch connection, the SIGA stops trying to make the connection and in-
stead returns a bus error. If there is no switch access in progress that is
re-trying to establish a connection, then the signal is ignored. The signalis

de-asserted when all interrupt requests are gone.

A pending interrupt is timed out, ifa remote reference is being attempted,
after OxFF- microseconds, where 7 is the contents of the Interrupts Pend-

ing/ Abort Retries register; the contents of the timer itself are not accessi-

ble to software. If bit 0 of the register is set to “1”, the timer is disabled and
the value of ¢ is irrelevant; bit 0 must be “0” for the timer to operate.

After power-on, the contents of the Interrupts Pending / Abort Retries reg-
ister is unspecified. '

276

BBN ACI Proprietary Draft: August 15, 1988

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

Butterfly il Hardware Architecture P " 11: B2VME Function Card

L lightweight steal

unused

Figure 11-17. Lightweight Steal register.
Turn the next XMEM instruction into a steal.
0xE0741000
read/write

Setting this bit to “1” causes the next XMEM instruction to steal the loca-
tion being exchanged. The lightweight steal cycle clears the Lightweight
Steal register to zero. Thus, when you set the bit and then execute an
XMEM, you steal the location and clear the Lightweight Steal register bit
in one operation. This register is a part of the process state and must be
saved along with the AR and PCR registers when switching context. See
also the Augmentation register steal bit.

Power-on clears the one defined bit of the Lightweight Steal register to
Ze10.

Draft: August 15, 1988 _ BEN ACI Proprietary 277

11: B2VME Function Card

31

unused

151413121110 9 8,7 6 5 4. 3 2 1 0

Butterfly 1l Hardware Architeciure

IR R I i

I l rack |pane|| slot IL—smaII

machine
— processor hode number
shortcut disable
_ write wrong parity

—— enable fast path

Figure 11-18. Machine Configuration Read register.

765 4.3 2 10

31

shortcut disable

unused L write wrong parity
enable fast path

Figure 11-19. Machine Configuration Write register.

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

278

Indicate and control certain basic operating characteristics.
0xE0760000
read/write, with different bit assignments for read than for write

There is just one Machine Configuration register, and it is given two names
to emphasize that its bit assignment is different when it is read than when it
is written.

The small machine bit indicates whether the machine is “small” (two
switch columns, and therefore less than 64 switch ports) or “large” (three
switch columns, 64 to 512 switch ports). The bit is “1” in a small machine,
“0” in a large machine. This bit is writable only by the TCS; to the CPU, it
is read-only.

The processor node number field is the number of the switch port that this
B2VME is plugged into. This field is read—only; the rack and panel sub-
fields are set by DIP switches on the midplane, and the slot sub-field is
hard wired in the midplane c1rc1ut etch.

The shortcut disable bit, when set to “1”, causes remote memory references
whose address corresponds to the local node to go over the switch. When
the shortcut disable bit is cleared to “0”, such references “short-cut” the
switch and go directly to memory.

BBN ACI Proprietary Draft: August 15, 1988

-L A -l Jar—

EDS ED OED I OED T

w-".\)

Bl D D X

Butterfly i Hardware Architecture R | 11: B2VME Function Card

The write wrong panity bit, when set to “1”, causes incorrect parity to be
written, into local memory only, on any size of write, by any T-bus master
(CPU, switch or VMEbus) This bit is intended for use in testing the mem-
ory. When this bit is cleared to “0”, correct panty is written.

The enable fast path bit, when set to “1”, enables the fast path used when-
ever the CPU makes a read request to local memory. When the enable fast
path bit is cleared to “0”, the fast path to memory is never used.

Power—on clears all defined bits of the Machine Configuration Write regis-
ter to zero. In the Machine Configuration Read register, the processor
node number field is not affected by power-on; the small machine bit is set
appropriately by TCS power-up operatlons before system software exe-
cutes on the node.

Draft: August 15, 1988 BBN ACI Proprietary 279

11: B2VME Function Card ' ‘Butterfly Il Hardware Architecture

“unused

_I |— non-maskable interprocessor interrupt

Figure 11-20. Non-maskable Interprocessor Interrupt register.

FUNCTION Interrupt the CPU, unless the CPU itself has interrupts disabled.

ADDRESS 0xE0760004 |

ACCESS read/write _ 7

DESCRIPTION Setting the non-maskable interprocessor interrupt bit of this register gener-
ates a non-maskable interrupt to the CPU. This interrupts the CPU unless
the CPU has all interrupts disabled via its internal Processor Status regis-
ter. The non-maskable interrupt should be used only when a fatal error
has occurred. This bit is cleared either by writing a “0” into it, or by read-
ing the Interrupt Source register.
Power—on clears the one defined bit of the Non-maskable Interprocessor
Interrupt register to zero.

280 BBN ACI Proprietary ' Draft: August 15, 1988

Butterfly || Hardware Architecture ' 11: B2VME Funclion Card

0

priority scheme
default priority
path
sneak data

unused

Figure 11-21. PCR Disable Mask register.

FUNCTION Prohibit setting bits in the Process Configuration register.
ADDRESS 0xE0780010
ACCESS read/write

DESCRIPTION Ifan attempt is made to set a bitin the Process Configuration register that
is disabled by its mask bit being set to one in the PCR Disable Mask regis-
ter, then a regnster load error is returned.

" Power-on clears all defined bits of the PCR Disable Mask register to zero,
so all bits of the PCR are initially writable.

 Draft: August 15, 1988 BBN ACI Proprietary | 281

11: B2VME Function Card

ADDRESS
ACCESS

31

unused

Butterfly Ii Hardware Architecture

76 5 4,3 210
I .
|—|— priority scheme <1..0>
default priority <1..0>

path <1..0>
sneak data

Figure 11-22. Process Configuration register (PCR).
FUNCTION

DESCRIPTION

Hold certain information associated with the software process currently
running on the processor.

OxE0740000
read/write, subject to PCR Disable Mask register

The CPU interface uses the priority scheme bits to select one of four prior-
ity schemes, one of which is given by the PCR default priority bits. This
selection determines the value of the T PRIORITY <1..0> bits to place
on the T-bus. The T_PRIORITY <1..0> bits are used only by the SIGA

(and thence by SGAs), so this mechanism is irrelevant for references to

local memory. The priority scheme selection is as follows:
if priority scheme <1..0> are...
0 0 thenT PRIORITY<1.0>
0 1 thenT PRIORITY<1.0>
1 0 then T PRIORITY<1.0> = 77?7
1 1 then T PRIORITY<1.0> = 77?7
Note: the priority scheme bits may be overridden by the absolute priority
bits of the Augmentation register.

797
299

(1 O 1}

The path bits describe the access path being used, as follows:

0 0 illegal (causes a no-response bus error)
use SIGA B (or local, depending on Physical Address)
use SIGA A (or local, depending on Physical Address)
local access (not via either switch, regardless of Physical
Address)

0
1
1

_—

- The sneak data bit contains the 33rd data bit of the most recent memory

reference that was augmented with a sneak (that is, with the sneak bit of the
AR setto “1”). This bit is writable by software, but normally is written only
when restoring the entire registér to return to a previous process context.

After power-on, the contents of the Process Configuration register is un-
specified.

282

BBN ACI Proprietary o Draft: August 15, 1988

S

i,

Butterfiy il Hardware Architecture - ' . 11 B2VYME Function Card

31 (151413121110 9 87 6 5 43 2 1 0

unused

U N N S IO N
LL'-— absolute
priority
bank1
bank2
bank3
— disable interrupts
— exception action
— lock-
sneak
— synchronized access -
—— steal

Figure 11-23. User Augmentation Enable Mask register.

FUNCTION Permit enabling certain augmentations via the AR block.
ADDRESS - 0xE0780008 |
'ACCESS read/write

DESCRIPTION The bits of the User Augmentation Enable Mask register control write ac-
cess to the corresponding bits in the AR, but only when the AR is accessed
as the AR biock.

O

If a given mask bit is “1”, the controlled bit(s) of the AR will be set
or cleared, as determined by bit(s) in the address used.

If the mask bit is “0”, the controlled AR bit(s) are not affected.by
attempts to change them. If the operation tries to set the masked
AR bit to “1”, a register load error results. Attempting to clear an
AR bit to “0” does not generate an error, even if the controlling
mask bit is “0”. '

If the operation tries to set some AR bits that are masked and some
that are not masked, then the bits that are not masked get set, the
masked bits do not get set, and a register load error occurs. In this
case, because some but not all of the attempted bits may have been
set, the AR may contain an unintended value, and it is the responsi- -
bility of the exception handler to ensure that the AR contains an
appropriate value.

The absolute priority bit masks both of the absolute priority bits of the AR.

The bankl, bank2 and bank3 bits mask the two bank bits of the AR, but not
in a bit-for-bit sense. If bank1is “1”, then AR bits bank < 1..0> may be
set to 01; if bank1is “0”, attempts to set the AR bits to 01 result in a register
load error. Similarly, bank2 being “1” allows setting AR bank<1.0> to

Draft: August 15, 1988

BBN ACI Proprietary 283

11: B2VME Function Card - Butterfly Il Hardware Architecture

10, and bank3 controls setting the AR bits to 11. The AR bits bank<1.0>
may always be set to 00; that setting is not controlled by a mask bit.

The disable interrupts bit masks the disable interrupts bit of the AR.
The exception action bit masks both of the exception action bits of the AR.

The lock, sneak, synchronized access and steal bits each mask the bit of the
same name in the AR. ‘

For the meaning of the bits that this register masks, see the Augmentation
 register. '

After power—on, the contents of the User Augmentation Enable Mask reg-

ister is unspecified.

284

BBN ACI Proprietary Drafi; August 15, 1988

N Im N

Butterfly Il Hardware Architecture.

11: B2VME Function Card

31 (151413121110 8 8 7 6 5 4.3 2 1 0

I
L]

unused

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

t ' unused

Figure 11-24. VMEbus Arbiter Timer register.
Detect when no VMEbus device responds to bus grant.
0xE07602DC

write only

Ifthe B2VME is VMEDbus system controller, one of its duties as bus arbi-
ter is to time out the bus grant signal. When the arbiter asserts bus grant,
the VMEbus Arbiter Timer begins counting, and stops when a bus master
acknowledges the grant by asserting the bus busy signal. If no device re-
sponds, expiration of this timer causes the arbiter to remove bus grant.
This occurs entirely within the B2ZVME VMEDbus interface, and is not ex-
plicitly visible to the BZVME CPU or to any other T-bus device. This time-

- out never occurs if all devices obey The VMEbus Specification; but timing

out bus grant allows forward progress if a violation does occur.

The arbitration cycle is timed out after 4 x(0xFF-f) microseconds, where ¢
is the contents of the VMFEbus Arbiter Timer register. The timer is initial-
ized from the register each time the B2VME asserts bus grant; the contents
of the timer itself are not accessible to software.

After power-on, the contents of the VMEbus Arbiter Timer register are
unspecified.

Draft: August 15, 1988 BBN ACI Proprietary _ 285

11: B2VME Function Card Butterfly Il Hardware Architecture

31

15 14 13 12411 10 9 8, 7 6 5 43210

|
L 1]

unused

| f unused

Figure 1 1-25. VMEbus B2VME Master Bus Timer register.

FUNCTION
ADDRESS
ACCESS

~ DESCRIPTION

Detect lack of response from a slave to the B2ZVME as bus master.
0xE0760200 '

write only

‘When the B2VME is VMEbus master, it asserts the VMEbus signal ad-

dress strobe and waits for a slave to respond with DTACK (“data acknowl-

edge”). The VMEbus BZVME Master Bus Timer starts counting when the

B2VME asserts address strobe, and stops when DTACK is received. If no

response is received, expiration of this timer causes the B2VME’s"

VMEbus master interface to remove address strobe, and its T-bus slave to
assert a bus error on the T-bus. Without this timeout, access to a non-te-
sponding VMEDbus device would be timed out only by the VMEbus system
controller, The system controller’s bus timer is typically set much longer
than the VMEbus BZVME Master Bus Timer, so relying on the system
timer would compromise responsiveness. The longer timeout would be es-
pecially serious for VMEbus-access across the Butterfly IT switch, where
maximum switch latency would be affected.

Any VMEbus reference initiated by the B2ZVME is timed out after OxFF-¢
microseconds, where # is the contents of the VMEbus B2VME Master Bus
Timer register. The timer is initialized from the register each time the
B2VME asserts address strobe; the contents of the timer itself are not ac-
cessible to software.

After power-on, the contents of the VMEbus B2VME Master Bus Timer
register are unspecified.

286

BBN ACI Proprietary Draft: August 15, 1988

Butterfly || Hardware Architecture ' 11: B2VME Function Card

/OT—'? - P Y
=7 oM Wi
31 (151413121110 9 8,7 6 5 43 2 1 0f

P |31|30|29]28127125|25i24|23122121

LI L K

unused ' VMEbus slave window

standard / extended addressing
release-when-done / reiease-on-request
— reset VMEbus (low true)
—— VMEDbus system reset (read only)
—- VMEbus system fail (read only)

Figure 11-26. VMEbus Configuration register. |
FUNCTION Contrdl the configuration of the BZVME as a device on the VMEbus.
ADDRESS 0xE0760204 _
ACCESS read (all bits) / partial write (all but the VMEbus system reset and fail bits)

DESCRIPTION The VMEbus slave mapper compares the VMEbus slave window to the
high bits of the address from the VMEbus, to determine whether the
VMEbus is referencing Butterfly I memory and therefore the BZVME -
should respond. See below for the number of bits compared.

The standard / extended addressing bit determines the type of VMEbus ad-
dressing to which the B2ZVME responds as a VMEbus slave. This also de-
termines how many bits of the VMEbus address are compared to the
VMEbus slave window, and therefore the size of the window from
VMEbus address space into Butterfly II address space. Note that the ad-
dressing used when the B2ZVME is VMEbus master is not determined by
this bit, but rather by the vme_am <5..0> bits of the VMEbus Master
Map RAM register.

value addressing .
0 extended (32-bit); compare vime_a <31..23> against
VMEbus Configuration register <10.2> (nine bits);
window is eight megabytes % <5738 O, 1% weabdyie LS

1 standard (24-bit); compare vine_a < %0}32:} > against
VMEbus Configuration register <2..0> (t-h% bits);
window is twe megabytes .7
A
Draft: August 15, 1988 BBN AC! Proprietary 287

11: B2VME Function Card

Butterfly Il Hardware Architecture

slave windowbits |10 9 8 7 6 5 4 3 2 1({0

extended addressing (32 bits)
- 8-megabyte window < compare
Configuration register bit = 0

|
|
I
L
|
t
l

standard addressing (24 -bits')
“2-megabyte window ‘.
Configuration register bit = 1 |

|
VMEbus address bits |31 30 29 28 27 26 25 24| 23| 22 p1

The release-when-done / reiehse_—on—'request bit controls when the B2ZVME

relinquishes VMEDbus mastership. A “1” indicates release-when—done, a

“0” release-on-request.

The reset VMEbus bit, when cleared to “0”, generates a reset on the
VMEDbus as long as it remains “0”. The bit must be set to “1” to de-assert
the reset signal on the VMEbus. The low-true sense of this bit ensures that
upon power—on, which clears the bit to zero, the VMEbus is held reset.
Resetting the BZVME does not generate a VMEbus reset, nor does reset-
ting the VMEbus reset the B2VME. .

. The VMEbus system reset and VMEbus system fail bits read as “1” if the
VMEDbus has been reset or suffered a system failure since this register was
last read; otherwise, these bits are “0”. Reading this register clears these
bits to “0”. The setting and clearing of these bits is controlled by devices on
the VMEDbus; see The VMEbus Specification for details.

After power-on, the contents of the VMEbus Configuration register are as
follows. Bits 9..0 (most of the VMEDbus slave window) are unspecified. Bits
13..10 are zero. Bit 14 will be *“1” because the B2VME itself is holding the
VMEDbus reset. Bit 15 depends on the state of other VMEDbus devices.

288

BBN AC! Proprietary Draft: August 15, 1988

LY

D O ED D OEDT BT

Rl D 2=

1

[as—

Butterfly Il Hardware Architecture o 11: B2VME Function Card

31 (151413121110 9 8, 7 6 § 4,3 2 1 0

unused

7| 6| 5-!'41 3| 2| 1

unused

request level 1
request level 2
request level 3 (Signetics
request level 4 | SCBE8154
request level 5 | Register R1)
request level 6 '
request level 7

Figure 11-27. VMEbus Interrupt Request registér.

FUNCTION

ADDRESS

" ACCESS

DESCRIPTION

Select the level(s) on which the BZVME generates a VMEDbus interrupt re-
quest. _

OxE0760804
read/write

Wiiting to this register generates an interrupt request(s) to the VMEbus,
on each level whose corresponding bit in the data written is a “1”. How-
ever, placing the request onto the VMEbus is under control of the enable
interrupts bit in the VMEbus Interrupt Vector / Control register. If the
B2VME is already requesting VMEbus interrupts on some levels, the lev-
els requested by writing to this register are added to those already present,
like an inclusive-OR function. The bits of this register are cleared indi-
vidually by IACK cycles on the VMEDbus, or all together by the clear inter-
rupts bit of the VMEbus Interrupt Vector / Controi register.

- Power-on clears all defined bits of the VMEbus Interrupt Request register

to zero, —OR?7?7— After power-on, the contents of the VMEbus Inter-
rupt Request register is unspecified.

Draft: August 15, 1988 BBN ACI Proprietary S | 289

11: B2VME Function Card Butterfly 1| Hardware Architecture

0

31 (151413121110 9 8/ 7 6 5 4,3 2 1

L1 1 t 1 |
unused : ' unused
enable interrupts Sianeti
clear interrupt requests ééggg 1'3

- — high order bits of interrupt vector Register RO)

Figure 11-28, VMEbus Interrupt Vector / Control register.
FUNCTION Control interrupts the B2VME generates onto the VMEbus.
ADDRESS OxEO760800 | A
ACCESS read/write

DESCRIPTION The enable inienupts bit, when set tb “1”, allows the B2VME to generate
interrupt requests onto the VMEbus.

The clear interrupt requests bit, when set to “17, forces off alt VMEbus inter-
rupt requests that the B2ZVME is assertin g This clears VMEbus Interrupt
Request register.

The high order bits of z'ntemdpt vector field specifies the highest five bits of
the interrupt vector that the BZVME will place on the VMEbus. This oc-
curs when the B2ZVME has requested an interrupt and some VMEbus de-
vice has responded with IACK to our requested level,

Refer to the Signetics SCB68154 data sheet for further details on this regis-
~ ter, and on the associated VMEDbus Interrupt Request register. '

Power—on clears all defined bits of the VMEbus Interrupt Vector / Control
register to zero. —OR???— After power-on, the contents of the VMEbus
Interrupt Vector / Control register is unspecified.

290 , " BBN ACI Proprietary Draft: August 15, 1988

a7

Butterfly Il Hardware Architecture o : 11: B2VME Function Card

31 30 29 28,27 26 25 2423 22 21 20,19 18 17 1615

0
5, 43,2, 1,0 31130129|2885l

. unused vme_am<5..0> vme a<31..13>

IACK (low true)

Figure 11-29. VMEbus Master Map RAM registers.

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

Map Butterfly II addresses into VMEbus addresses.
0xE07A0000-t0-0xEOTALFEE (shared with interleaver)
read/write

When the B2VME is VMEbus master, system physical addresses from the
T-bus are translated into VMEbus addresses by the master mapper, using
these registers. The nine bits T_AD <21..13> select one of 512 VMEbus
Master Map RAM registers, whose bits then supply parts of the VMEbus
address as indicated. '

The IACK bit is used when the BZVME.is responding as a VMEDbus inter-

- rupt handler to an interrupt request generated by a VMEbus interrupter

device. When an interrupt handler receives an interrupt, it must generate
aninterrupt acknowledge (IACK) cycle to get the interrupt vector from the
interrupter. To generate the IACK cycle, the interrupt handler performs a
halfword (16-bit) read from a specially-mapped address. The address is
mapped by the VMEbus Master Map RAM registers, and the particular
map register used has its IACK bit asserted (set to “0”). Bits 3.1 of the
address are the interrupt level obtained from bits 3..1 of the Interrupt
Source register. This causes the interrupter to respond with an interrupt
vector, which is returned to the interrupt handler as the result of its
halfword read. :

These registers are located in SIGA register space because the interieaver_
loader mechanism is used to load them.

After power-on, the contents of the VMEbus Master Map RAM registers
is unspecified. -

Draft. August 15, 1988 BBN ACI Proprietary 201

31 16151413 1201110 9 8, 7 6 § 4,3 2 1 0

l}g16|15114|13

11: B2VME Function Card | 7 Butterfly il Hardware Architecture

l 33|32'

- L'— T_AD<33.32>
T_AD<31..13> unused T PATH<1..0>
lnterleaved
- T_PRIORITY <1..0>

Iock T-bus
— bypass

Figuré 11-30. VMEbus Sl_a‘ve Map RAM registers.

FUNCTION
ADDRESS
ACCESS
DESCRIPTION

Map VMEDbus addresses into Butterfly 1T addresses.

0xE0761000 to OXEQ761FFC
OX ZO 120000 e DA R
read/write

When the BZVME is a VMEbus slave, responding to some other VMEbus

" device, system physical addresses from the VMEbus are translated into

Butterfly IT addresses by the slave mapper, using these registers. The ten
bits vine_a < 22..13> select one of 1024 VMEbus Slave Map RAM regis-
ters, whose bits then supply parts of the address and other data placed on
the T-bus as indicated. The three bits named bypass, lock T-bus and inter-
leaved describe the type of reference to make. Bypass tells the VMEbus
slave (T-bus master) to make an operation that will bypass a lock; lock T-
bus tells it to make a locked operation. The VMEbus slave encodes the
type of reference into bits T LOCKOP <1..0>. The interleaved bit tells
the SIGA whether to take the high nine address bits from the T-bus
(T_AD <33..25>) or from the interleaver (MOD <8.0>).

~ After power—on, the contents of the VMEbus Slave Map RAM registers is

unspecxfied

292

BBN ACI Proprietary | Draft: Auguét 18, 1988

o1 o |

Butterfly Hl Hardware Architecture | 11: B2VME Function Card

1514 13121110 9 8,7 6 5 4,3 2 1 0

unused

o unused

Figure 11-31. VMEbus System Bus Timer register.

FUNCTION.
ADDRESS
ACCESS

. DESCRIPTION

Detect lack of response from a slave to any VMEbus master.
OxE0760208 '

write only

If the B2ZVME is VMEbus system controller, one of its duties is to time out
the address strobe signal. When any VMEDbus master asserts address
strobe, the VMEbus System Bus Timer begins counting, and stops whena
slave device responds with the signal DTACK (“data acknowledge”). Ifno
slave responds, expiration of this timer causes the B2VME system control-
ler hardware to assert the VMEbus signal BERR (“bus error”). This oc-
curs entirely within the BZVME VMEbus interface, and is not explicitly
visible to the BZVME CPU or to any other T-bus device. This situation
may occur in a properly operating system. For example, on power-up, a

‘program may poll the VMEbus to find available memory.

A VMEbus access is timed out after 4 x (0xFF-) microseconds, where ¢ is
the contents of the VMEbus System Bus Timer register. If the B2ZVME is
VMEDbus system controller, the timer is initialized from the register each
time address strobe is asserted by any VMEbus master; the contents of the
timer itself are not accessible to software.

After power-on, the contents of the VMEbus System Bus Timer register is
unspecified.

Draft: August 15, 1988 BBN ACI Proprietary . 203

A.1

A2

294

Switch Interfacé Gate Array
(SIGA)
Specification

.

Introduction

The SIGA is a gate array device which serves as the bidirectional interface between a

- Computational Node and the Switch network of the Butterfly Il Parallel Processor. As
- such, the SIGA provides devices on each Computational Node with virtually transpar-

ent read and write data access to similar devices on physically remote nodes. The

SIGA accomplishes this by accepting/presenting data via the standard interface that

these devices support - namely the T-Bus - and then presenting/accepting this same
data to the Butterfly Switch interface for transport.

This document will present both a detailed functional and operational description of
the SIGA. It is intended to be used as a design guide for both hardware and software
system engineers. This specification is necessarily limited in its scope and thus will
touch upon other Butterfly II-related subjects only when it is necessary for complete-
ness. Therefore, it is assumed that the reader of this document has a general knowl-
edge of the concepts of the Butterfly II architecture and operation. The reference
documents are as follows:

e T-Bus Specification (Ward Harriman)

e Switch Gate Array Design Specification (Ward Harriman)

e Butterfly I Level Converter Array Specification (Mike Sollins)

o Switch Protocol Specification (Ward Harriman)

Figure A-1. Reference documents.

Terminology

The following terms will be used throughout this document:

BBN ACI Proprietary Draft: 9/20/88

A\

R B O o o o

i

Butterfiy il Hardware Architeciure - _ . A; SIGA Specification

Byte

Anticipation

" Downstream Node

Drop——Lock

Function Response

Function Request

Final Locked message

Half-Word

Initial Locked message

Local Errors

Logical Route Address
Locked message
Message

Message Acknowledgment

Draft: 9/20/88

Refers to an 8-bit quantity.

A feature of the SIGA design that allows the SIGA totake advantage of
certain parallel optimizations.

The node which services a switch transaction.

When the Requestor negates Frame during a locked sequence, causing
the Server to issue a FREE-LOCK.

A generic term for the various incarnations of a response to a function
request from some downstream T-Bus slave to an upstream T-Bus
stave. This includes the transformations that the response undergoes
as it travels from the downstream T-Bus, downstream SIGA, Switch,
upstream SIGA, and finally the upstream T-Bus (see Function Re-
quest). '

A generic term for the various incarnations of a request from some up-
stream T-Bus master to a downstream T-Bus slave. This includes the
transformations that the request undergoes as it travels through the
upstream T-Bus, upstream SIGA, Switch, downstream SIGA, and fi-
nally the downstream T-Bus (see Function Response).

The same as a Locked message except that the Switch path is released
by letting Frame = 0 for at least two Switch Intervals after the operation
has been acknowledged.

Refers to a 16-bit quantity (see Word).

Occurs under the same circumstances as the Unlocked message except
that the Switch path is held open once the operation has been acknowl-
edged without errors.

Errors which originate in the Requestor.

A 9-bit Switch node address generated from either the Interleaver or
the T-Bus. This address is then transformed, possibly by randomizing
some of the bits, into the Physical Route Address.

A message which occurs when the Switch path was already locked and
causes it continue to be locked after the operation has been acknowl-
edged.

With the exception of Reject, 2 Message is the assertion of Frame
(downstream message) or Reverse (upstream message) possibly with
associated data on the data lines.

~ Also known as M_ACK. This refers to the assertion of Reverse for at

least two Switch Intervals during a function response. It indicates that

BBN ACI Proprietary : 295

A: SIGA Specification

Message Header

Message Body
Multi-Word Transfer
Operational State
Physical Route Address
Quick-Drop

Quiescent State

Remote Errors

Reject

- Sequence

Split-Cyéle

Switch Interval

Switch Modulus

Transaction

Unlocked Message

Upstream Node

Valid Me_ssage '

296

Butterfly I Hardware Archirecture

the downstream Server has Acknowledged the receipt of a Function
Request. '

-The part of a downstream Switch message that carries routing infor-

mation. That part is stripped-off by the Switch and thus never reaches
the downstream Server. The message header for an upstream Switch
message is null.

The part of the downstream Switch message that carries the command,
address, data, and checksum bytes.

Refers to a read or write function request that involves more than one

word (32 bit) of data.

A SIGA initialization state which allows full operation of the SIGA.

The transformation of the Logical Route Addfess after some of its bits
have been randomized. The Physical Route Address is placed into the
downstream Message Header.

- This is an optimization in the Requestor where the R_FRAME signal

is negated as soon as possible after an R_REVERSE is received.
A SIGA initialization state which allows partial operation of the SIGA.
Errors which originate in the Server.

An assertion of Reverse for one Switch Interval. Indicates that a mes-
sage was rejected at either a Server or an SGA.

A function request followed by a function response.

A T-Bus Read transaction where the Master releases the bus while the

Slave is completing the transaction.

The 25 ns period in which Switch data is propagated.

The number of ports that a basic switching element can handle. That

number is currently eight.
Another word for a Sequence.

Occurs when the Switch path had previously been “torn-down”. This
occurs whenever Frame was “0” for at least two Switch Intervals. Once
the operation has been acknowledged, the path is torn-down again.

The node which initiates a switch transaction.

A downstream message which carries a read or write request and does
not violate switch protocol.

BBN ACI Proprietary Draft: 8/20/88

Butlerfly Il Hardware Architecture o A: SIGA Specification

Word Refers to a 32-bit quantity (see Half-Word).

A.3 Document Standards
The following describes some of the standard syntax and expressions used in this docu-
ment. '

A.3.1 Register Definition Syntax

A typical register definition is shown in Figure A-2. Referring to Figure A-2, the “-"
in any bit indicates that this bit is a “don’t care” on a write and indeterminate on a
read. If “~” totally fills a field of eight bits, that field should NEVER be written to but
of course, can be read from. The entire register may be referred to in any one of the
following ways: '

(1) Protocol_Timer_Config<15..0>
(2) Protocol_Timer_Config

(3) PIC<15.0>

4 PIC

The sub-fields, shown in Figure A-2 within “[]”, can be referred to in various ways.
For instance, the “Cnt” subfield could be referred to as:

M Protocol_Timer_Config<15..12>
(2) Protocol_Timer_Config.Cnt <3..0>
(3) Protocol_Timer_Config.Cnt

4 PTC.Cnt ,

Register: Protocol_Timer Config<l5..0>

15 0
I |-
3..0 3..0 T...... 0
CCCC PPPP —-NNNNNN

(Cnt] [Pre] [Con]

Figure A-2. Register syntax definition.

A.3.2 Logical Operators

Figure A-3 shows the standard operators used in this document.

Draft: 9/20/88 BBN AC! Proprietary | | 297

A: SiGA Specification o Butterfly i Hardware Archifecture

A3.3

A.4

A4l

A.4.1.1

298

OPERATOR, FUNCTION

& logical "and"

logical "or"

3 _ logical "exor"
! logical "not"
'3 logical "exnor"
| concatenate

Figure A-3. Example - logical operators.

Timing Diagram Symbols

Timing diagrams use ASCII characters to represent signal states. Figure A-4 illus-
trates some of those symbols and their associated meanings. In addition, if no clock
signal is present in a timing diagram, it is assumed that each character column repre-
sents an active transition of the appropriate clock.

SYMBOL MEANING
H ‘logical "1t
_ logical "O"
..... continue previous state

27777 - state unknown and unimportant

Figure A-4. Example - signal symbols.

Functional Overview

The following describes the basic functionality of the SIGA at a conceptual level.

Functional Unit Description

The SIGA is composed of four basic elements, the Requestor, Server, Control Net In-
terface and the Config/Status Unit. Although these are physically colocated and share
some common togic and control, they are functionally independent units and will be
described separately.

Requestor

The Requestor is a T-Bus slave device which transparently couples physically remote
T-Bus slave devices to the local T-Bus by interacting with both the Switch and the
downstream Server. The Requestor appears to the current T-Bus master as a segment
of memory which is out of the range of physical memory at the local node. Signals on

BBN ACI Proprietary Draft: 9/20/88

Butterfly Il Hardware Architecture : _ A: SIGA Spegcification 7

A.4.1.2

. A4.1.3

the T-Bus alert the Requestor that the current access is for a remote location and the
Requestor then initiates the switch transaction to comply with the master’s read or
write request.

Since the transaction is not completed immediately (indicated by the Requestor with a
PROMISE response), the requesting T-Bus master follows the T-Bus protocol and
releases the bus so that other devices may use it. The Requestor eventually regains
control of the T-Bus, alerts the requesting master that the read or write operation has
been completed, and returns data or an error indication. If the current sequence is
locked, as requested by the T-Bus master, and no errors are encountered, the Reques-
tor holds open the Switch path for the next transaction rather than rearbitrating for a
new Switch path. Any errors that may have occurred during this operation are sig-
naled to the T-Bus Master through the ERROR response.

Server

The Server acts as a master on the local T-Bus of the downstream node and services
requests from the upstream node’s Requestor. When a new valid message enters the
Server from the Switch, the Server obtains the local T-Bus; locks the T-Bus slave, if
desired; performs the read or write operation; and then returns the data and/or error
byte to the Upstream Node’s Requestor. The Server can also initiate other special op-

erations independently of receiving a new Switch message. This operation, known as

drop-locks, is described elsewhere in this document.

TCS Control Unit

‘The basic purpose of the TCS Control Unit (TCU) is to give the serial interface of the

TCS Control Slave Processor access to the T-Bus interface - in essence, to act as a

- protocol converter. A secondary function is to allow the TCS Slave Processor DI-

A41.4

A4.2

Draft: 9/20/88

RECT access to some of the internal functions of the SIGA, rather than forcing it to
access via the T-Bus interface. This is useful for fault-tolerance and “out-of-band”
functions such as bootstrapping. '

Configuration/Status Unit
The Config/Status Unit (CSU), acting as a T-Bus slave, allows read/write access to all

programmable parameters of the Requestor, Server and TCS Control Unit. The CSU
also provides convenient access to the internal state of certain nodes for testability.

System Operation

From a high-level view, the SIGA is one link in the chain of devices that allows a T-Bus
‘device to fulfill a function request with a function response. The role of the SIGA in
fulfilling both function requests and responses is now described.

- BBN ACI Proprietary 299

A: SIGA Specification Butterfly | Hardware Archirecture

A.4.2.1

300

Function Requests

Alocal T-Bus masterin the upstream node, usually the CPU initiates the sequence by
placing an address on the T-Bus, which is detected by the SIGA Requestor as a remote
access request. During the T-Bus request phase, the SIGA stores the address, pro-
duces and stores the bid, and command bytes. It then initiates the downstream mes-

sage at the Switch interface by asserting Frame and placing the bid symbols on the :

Switch datalines. Normally, this'message transmission is initiated by the SIGA imme-

diately upon receiving the address from the T-Bus, but it can be programmed to start

later. On a write, the SIGA loads its data registers during the response phase of the
T-Bus cycle. All operations are split-cycle and thus the Server will release the bus
while it processes the transaction request.

If there is no Switch contention, the assembled message continues to be transmitted
and is ultimately appended with a checksum derived from the message data bytes. If
there is Switch contention, a Reje_ct is generated by the Switch and eventually makes its
way upstream to the Requestor via the Reverse line. When this happens, the Requestor

- negates Frame, waits fora predetemuned amount of time and then retries the message

by asserting Frame and sendmg the message components stored from the first at-

tempt.

Sometime after the beginning of the message reaches the Server at the downstream
node (i.e., it is not Rejected by the Switch), that Server begins arbitration for its local

‘bus to complete the transaction. If the device on the downstream node is locked to a

remote bus master other than the Server, the Server issues a Reject which propagates
upstream and is eventually detected at the upstream Requestor. This Reject is treated
exactly the same by the Requestor as a Reject from the Switch. Note that this is the
ONLY instance in which the Server will issue a Switch Reject - an Initial Message.

Assuming that the Requestor receives neither a Switch Reject nor a Server Reject, it
deasserts Frame for one switch interval while it sends the checksum byte. Within the
checksum byte, the “forward” bit is reset. This event would normally cause the for-
ward drivers of the SGA's to turn off after they send the checksum byte. However, the
current implementation of the SGA ignores this bit and turns—on its forward drivers in
response to the Frame profile. The Requestor then awaits a response from the Server.
Note that the forward bit is not used by the current SGA's.

~ In the meanwhile, the downstream Server begins processing the request by arbitrating

for the local T-Bus. Assuming that the target downstream bus slave was not locked to
a downstream master other than the Server, the Server obtains the local bus and possi-
bly opens the local memory lock, The Server will open the lock only if this action was
requested in the downstream message. This would occur if the master on the upstream
node’s local bus requested an OPEN lock when it initiated a transaction through it’s
associated Requestor.

Once the downstream Server obtains the local bus, it makes a function request to per-
form the appropriate read or write operation. The only exception to this is when the
Server detects a checksum error in the downstream message. If this occurs, instead of

making a request, the Server releases control of the T-Bus, creating a “dead” bus cycle

BBN ACI Proprietary Draft: 8/20/88

L)

R SEm CEm

Butterfly Il Hardware Architecture . L A: SIGA Speciiication -

A4.22

Draft:-8/20/88

and thereby aborting the transaction. This action on an aborted transaction should
eliminate any unwanted side—effects if the switch message is corrupted.

Function Responses

Assuming that a read transaction was requested, the downstream Server completes
the read as a normal local T-Bus master. As soon as the read data is obtained by the
Server, a message is returned to the upstream Requestor. This happens (over the same
data wires which the downstream message was sent) by asserting Reverse and applying
data to the Switch data lines. The upstream message contains the read data, and possi-
ble error data; a checksum; and a message acknowledgment, or M_ACK which is im-
plicit in the assertion of Reverse for at least two Switch intervals. Ifa write transaction
was requested, the Server writes the data to the address specified in the downstream
message and sends back an M_ACK with an error byte data and checksum after the
data has been accepted by the slave on the local T-Bus. In short, a read returns data/
errors and an acknowledgment whereas a write only returns possible errors and an
acknowledgment.

In the case of a read transaction, the upstream Requestor detects the M_ACK and

- alerts the local split—cycle master which initiated the request that the requested data

has been returned. That master then completes the operation by retrieving the data. In
the case of a write transaction, the Requestor also alerts the initiating local bus master
that the write was completed but returns only error information. -

In the absence of errors, the Requestor will continue to hold the Switch path open by
asserting Frame only if the sequence was initiated with an OPEN. If that master de-
cides to release the lock, the Requestor will tear-down the switch connection by negat-
ing Frame and will enter its unlocked idle state. This is the state that it was in at the
beginning of this discussion of function requests. If the upstream bus master does not
release the lock, it may initiate another read or write transaction. This and subsequent
transactions are referred to as locked transactions. Outside of errors, locked transac-
tions end only when the upstream T-Bus master which OPENed, MAINTAINed or
BYPASSed the SIGA Requestor lock decides to release that lock with a FREE-
LOCKS command. . ' ‘ '

Subsequent message transactions in a locked sequence differ from the initial transac-
tions described above in three major ways. First, locked messages do not contain any
bids because the path has already been established. Second, the Switch will never issue
a Reject because the path has already been established and is being reserved for the
Requestor. And third, the downstream Server will never issue a Reject because it will
already have exclusive use of the local memory lock. Aside from these exceptions, sub-
sequent locked transactions occur in exactly the same manner as unlocked transac-
tions. As mentioned previously, the upstream T-Bus master owning the SIGA
Requestor MUST release that lock explicitly with a FREE-LOCKS.

BBN ACI Proprietary ' 301

A: SIGA Specification Butterfly Il Hardware Archirecture

A.4.3

A.4.3.1

“A.4.3.1.1

302

‘Basic Méssage Formats

Message formats differ mainly with the type of function request; read or write. Within
a read or write message; the downstream and upstream messages corresponding to a
function Tequest and response also differ.

Read Messages

Read message formats differ mainly depending on whether or not they are downstream
Or upstream messages.

Downstream

Downstream Read messages are differentiated partly because of their data format and
partly because of the state of Frame at the beginning and end of the message. The
formats for three possible SIGA Requestor read operations are considered:

1. An Unlocked Read occurs when the Switch path had previously been “torn-
down”. This occurs whenever Frame was “0” for at least two Switch Intervals.
Once the operation has been acknowledged, the path is torn-down again.

2. An Initial Locked Read occurs under the same circumstances as the Unlocked
: Read except that the Switch path is held open once the operation has been ac-
knowiedged.

3. ALocked Read is a read which occurs when the Switch path was already locked
and it continues to be locked after the operation has been acknowledged.

In all cases, the Requestor waits for a Message Acknowledgment (M_ACK) from the
downstream Server before completing the message. Figure A-5 illustrates the three
read message types for a two column switch. In this figure, the “d” field indicates the
direction of the LCON drivers which interface data with the LCON. When d = “P”
{Output), the Requestor is sourcing data to the Requestor/LCON interface. When d
= “I” (Input), the LCON drivers are sourcing data to the Requestor/LCON interface.
The “f” field is the state of the Frame bit. Data is MSB at the left of the field.

BBN ACI Proprietary Draft: 9/20/88

‘_

Butterfly i Hardwase Arciuteciuie _ AL DIGA Dpg vl

-A.4.3.1.2

Draft: 9/20/88

HHNTWYTOtOYUYU I Q

Unlocked Initial Locked

Read Locked Read . Read
f data d £ data df data
0 XXXXXXXX P 0 XXXXXXXX P 1 xXxxXXXXXX
0 XXXXXXXX P 0 XXXXXXXX P 0 XXXXXXXX
1 -bidl--- P 1 -bidi-=- P11 —cmd-——
1 -bid2--- P 1 -bid2--- P 1 -addrl--
1 -cmd---- P 1l -cmd———- P 1 ~addr2--
1 -addrl-- P 1 -addrl-- P 1 -addr3--
1 ~addr2-- P 1 -addr2-- P 0 ~-check--
1 -addr3-- P 1 -addr3-- I 1 00000000
0 -check-- P 0 -check-- I 1 00000000
1 XXXXXXXX I 1 XXXXXXXX "
1 XXXXXXXX I 1 XXXXXXXX M_ACK -
" " o and read data
M_ACK M_ACK "
and read data and read data I 1 XXXXXXXX
" " P 1 XXXXXXXX
I 0 XXXXXXXX I 1 XXXXXXXX
P 0 XxXXXXXX P 1 XXXXXXXX

Figure A-5. Read switch message format - downstream.

Upstream

When a downstream read message has been received and processed by a Server, an
upstream message is returned to the initiating Requestor based on the operation re-
quested. Under normal conditions, the Upstream Message is composed of two parts:
the returned data (with checksum) and the M_ACK (Message Acknowledge). The re-
turned data is the contents of the remote memory location read, whichcanbe 1,2 or 4
words in length. With the exception of rare error conditions, the actual message data
field is almost always a multiple of four.

Figure A-6 illustrates the ﬁpstream message. The “r” field is the Reverse signal. Data
is MSB at left of the field.)

i-word, 4-byte Read

0 XXXXXXXX
1 -data a-
1 -data b-
1 -data c-
1 -data d-
1 -check—-
0 XXXXXXXX

Figure A-6. Read switch message format - upstream.

BBN AC! Proprietary 303

A: SIGA Specification Butterfly Il Hardware Archirecture

A.4.3.2

A.4.3.2.1

Write Messages

Write message formats differ mamly depending on whether or not they are down-
stream Or upstream messages.

Downstream

Downstream Write messages are differentiated partly because of their data format
and partly because of the state of Frame at the beginning and end of the message. The
formats for three possible SIGA Requestor write operations are considered: In all
cases, the Requestor waits for a Message Acknowledgment (M_ACK) from the down-
stream Server before completing the message. Figure A-7 illustrates the three write
message types for a two column switch. In the figure, The “d” field is the direction of
the LCON drivers which interface data with the SGA. When d = I, the Requestor is
sourcmg data to the Requestor/LCON interface. Whend = P, the LCON drivers are
sourcing data to the Requestor/LCON interface. The “f” field is the state of the Frame
bit. Data is MSB at left of the field.

1. An Unlocked Write occurs when the Switch path had previously been “torn-
down” by the fact that Frame was “0” for at least two Switch Intervals. Once the
operation has been acknowledged, the path is torn-down again.

2. . AnInitial Locked Write occurs under the same circumstances as the Unlocked
Write except that the Switch path is held open once the operation has been ac-
knowledged.

3. ALocked Write is a write which occurs when the Switch path was already locked

and it continues to be locked after the operation has been acknowledged.

304 .-

BBN ACI Proprictary Draft: 9/20/88

E 1
/]

e §

Butterfly Il Hardware Architecture

A.4.3.2.2

Draft: 9/20/88

HMHTYDTYWOUYTTTH A
HHOKMHHHEHHEHHMEKEHEMEKFHOO

Unlocked
Write

IO
PO

Figure A-7. Write switch message format - downstream.

XXXRXXKKXK
XXXXXXEX
-bidl-w-
-bid2---
~cmd--—-
-addri--
-addr2--
~addr3--
-data a--
-data b-
-data ¢-
-data d-
—check--
b $.4.4.4.6.6 5.4
XXXXKXXXX

M_ACK

L]
XXXXXXXX
XXXXXXXX

Upstream

When a downstream write message has been received and processed by a Server, an
upstream message is returned to the initiating Requestor based on the operation re-
quested. Under some conditions, the Server will not act on the downstream message
and will instead send a Reject back to the Requestor. Under normal conditions howev-
er, upstream messages contain an M_ACK, an error byte (normally all 0’s) and a

checksum.

The following illustrates the only possible return message for a write. The “r” field is

Initial
Locked.Write

f

HHYYYY'W'YYDYYYOHHH |

I1
P1

HEPOHRMERHHMRPHMEDO

data
XXXXXXXX
XXXXXXXK
-bidl---
-bid2-—
-cmd-——-
-addril--
-addr2--
-addr3--
-data a-
-data b-
—-data c-
-data d-
-check--
XXXXXXXX
AXKXXKXXKX

"
M_ACK

1]
XXXXXXXX
XXXXXXXK

A: SIGA Specification

HHWYYYYYYTYMY T Q

H RO MMERHR@MSHRBOR

-

XXRXXXXX
XXXXXXXX
—-cmd——-——
-addrl--
~-addr2—-
-addr3--
-data a-
-data b-
-data c-
~data d-
-check-—-
XXXXKXXXX
XXXXXXXX

M_ACK
1T

XXXXXXXX

XEXXXXXX

the Reverse signal. Data is MSB at left of field.
Any Write

Figure A-8. Write switch message format - upstream.

XXXXXXXX
-error--

XXXXXXXX
XXXXXXXX

0
1
1 -check--
o]
0

BBN ACI Proprietary

305

A: SIGA Specification Butterfly || Hardware Archirecture

A.5

A.5.1

A.5.1.1

A.5.1.1.1

306

Detailed Functional Descriptibn

The Requestor, Server, TCU and Configurétion/Status Unit are now described in de-

 tail.

Requestor

The Requestor is described from the point of view of its overall operation and its two
major interfaces: the T-Bus interface and the Switch Interface.

Operation

‘The operation of the Requestor is described by discussing its major functions.

Overview

The Requestor is a local T-Bus slave which creates a logical coupling to a physically
remote T-Bus slave via the Switch. The Requestor acts as the “initiator” of this cou-
pling on the Switch and thus can be thought of as a “slave” on the T-Bus but a “master”
to the Switch. Referring to Figure A-9, the Requestor contains three major functional
units: Bus Interface Unit (BIU), Switch Tx Unit (STU), and the Switch Rx Unit (SRU).
The BIU is clocked by the T-Bus clock and both the STU and SRU are clocked by the
Requestor Switch clock (R_CLK). Interfacing of control signals between these unitsis
accomplished with handshake synchronizers, as shown. The BIU handles all of the
T-Bus transactions of the Requestor. The STU translates function requests that it
receives from the BIU into Switch transactions. The SRU receives reply messages
from the Switch and passes their status, in the form of a status code, back to the STU
and their data back to the BIU. The STU serves as the single interface for control
information between the T-Bus side and Switch side of the Requestor and therefore

‘control information in either direction must pass through the STU, This is done to

reduce the number of control interfaces that the BIU must deal with.

BBN ACI Proprietary Draft: 9/20/88

v ool e

Butterfly Il Hardware Architecture A: SIGA Specification

o m e + o +
| | e L |
! | <===—- | sync | -——-—- >|Switch|
| | ot |Tx }emmmmeee >|
| Bus | = >|Unit |========>|
| Interface| i | i
C=======>| Unit | > | | |s
| I | 4= + |w
1 g | |1
N I | A + | T
| | +-—>] I e
| | [| |H
| | | Switch| |
| |< I R 1
[| |Unit |<=====c==|
| | | I I
o + e + i

Figure A-9. Requestor block diagram.

The BIU/STU interface is a streamlined request/response type interface where for
each BIU request there is an STU response. The BIU presents an encoded function
request to the STU and sets an “execute” flag. When'the STU is done operating onthat
request, it sets a “done” flag and returns a status code and data to the BIU. Both the
BIU and STU are responsible for handling their own functions independently and they
have very little real-time knowledge of each other’s state. This approach simplifies the
Requestor design and carries the request/response philosophy throughout the system.

The BIU has four major responsibilities: (1) screen T-Bus requests for correctness; (2)
transfer screened T-Bus requests to the STU if a Switch transaction is indicated by
that T-Bus request; (3) receive replies from the STU; and (4) pass replies, including
any errors, as responses to the T-Bus. The BIU acts as a T-Bus slave which is always in

- split-cycle mode. In other words, it NEVER responds immediately to a function re-
- quest from a T-Bus master except when a request error is detected. Outside of those

Dratft: 9/20/88

exceptions, the BIU always responds with a PROMISE to T-Bus requests.

The BIU screens T-Bus requests for both T-Bus protocol violations and illegal func-
tion requests. Without exception, these conditions will prevent the BIU from ever acti-
vating the STU to complete an initial function request. The BIU can also initiate
certain function requests to the STU'independently of T-Bus requests. An example of
this is the drop-lock function which may under certain conditions be initiated by the
BIU rather than the T-Bus.

The STU acts on a function request from the BIU and initiates the Switch transaction
to carry out that request. The STU also is responsible for assembling and transmitting
the data in an outgoing message. If also handles things such as the message start/retry
and priority promotion algorithms and deals with various protocol timeout violations.

- BBN AC! Proprietary _ : 307

A: SIGA Specification

A.5.1.1.2

A.5.1.1.21

308

Butterfly Il Hardware Archirecture

The SRU is fairly simple in function. It detects the return message of a function re-
quest initiated by the STU, verifies the checksum and alerts the STU of the incoming
message and the checksum status. The SRU also detects Switch Rejects.

RTC and related functions

The Real Time Clock, besides being useful as a system timekeeper, is central to the
operation of much of the Requestor. It is used to directly control the functions of the
Time_Of_Next_Interrupt and the Priority_Time_Slot mechanisms. These mecha-
nisms are described in this section. The RTC is also used, in a less direct manner, to
contro! the Protocol Timers. Protocol timers are discussed elsewhere in this docu-
ment.

Real Time Clock and Prescaler

The RTC is basically a large (32 bits) counter which is updated every one microsecond
from a divided-down version of the Switch clock. Since the frequency of the Switch
may vary in different applications, the Real Time Clock uses a programmable pres-
caler to divide the Switch frequency down to a one microsecond time base. A function-
al diagram of the Real Time Clock is shown in Figure A-10.

————— Real Time Clock--———w=—wem- | | -Prescaler-|

I
| ~-=—~RTC.Hi---——| |-—-——-RTC.LOw==~~ i | -—--RTP----|
+ -—= + 4+ + +-+ - +
i 16 | | 18 |<-D-o|1|<-h| 5 |
e i-— + c——+ +¢+ = +==-C-+
| | | |
i 1_ | |
e N Dem—pm e +
I
|
l
Fmm—— +
{delay|<--M_SIXTY FIVE
Frrmem——— +
.. .where,
~h = increment pulse (period = 0.5 us)
0 = increment pulse (period = 1.0 us)
s = increment pulse (period = 65536 us)
¢ = clear input
i = increment input
D = one D Flip-Flop for pipelining

Figure A-10. Functional diagram - Real Time Clock.

BBN ACI Proprietary | | Draft; 9/20/88

\
Wt

B D e e B

Butterily |l Hardware Architecture ' , - A: SIGA Specification

Figure A-10 shows that prescaler is actually composed of two parts. The first partisa
count-up prescale counter that has a programmable terminal count value. This 5-bit
terminal value is supplied by the Real_Time_Prescale subfield of the ConfigA register
(REQ_ConfigA Real_Time_Prescale). The 5-bit counter drives the second part of the
prescaler: a divide-by-two. The divide-by-two then generates the one-microsecond
time base used by the Real Time Clock. Figure A-10 also shows the presence of the
M_SIXTY_FIVE signal. This signalis a system-wide pulse which occurs every 65 mil-
liseconds and lasts for one Switch Interval. It is used to keep all the Real Time Clocks
on all nodes in synchronization.

The M_SIXTY_FIVE resets the entire prescaler and the lower-half of the Real Time
Clock. In addition, it increments the upper-half of the Real Time Clock. Figure A-10
also shows a “pipeline” delay for the M_SIXTY_FIVE signal. The Configuration bits,
REQ_ConfigA Sixty_Five_Delay < 1..0>, aliow the adjustment of this delay. The ad-
justment values and their effects are shown in Figure A-11. '

DD Delay

00 none

01 1 Switch interval
10 2 Switch intervals
11 3 Switch intervals

...where,

D..D = ConfigB.Sixty Five_Delay<l,.0>

Figure A-11. Sixty_Five_Delay settings.

The setting DD = 00is for test purpo.ées only and must NOT be used in normal opera-

~ tion.

In actual operation, the prescaler RTP <4..0> counts-up at the Switch frequency until
it reaches the count stored in REQ_ConfigA.Real_Time_Prescale, where it generates
an increment pulse lasting one Switch Interval. In the next Switch clock interval, the
prescaler rolls-over to zero. Thus, the ConfigB.Real_Time_Prescale must always be
programmed to make RTP <5> have a period of 0.5 microseconds. ‘

Draft: 9/20/88

Because of hardware speed considerations, the OMSP generated by the RTP is actual-
ly pipelined by one Switch Interval. Therefore, the RTP appears to be running “ahead”

. BBN ACI Proprietary 309

A: SIGA Specification : Butterfly Il Hardware Archirecture

of the RTC by one Switch interval, This fact only becomes significant for the Slotted
Start/Retry criterion. See that section for further details.

. .

The Real Time Clock is basically, as mentioned previously, a large counter. The regis-
ter definition of the Real Time Clock is shown in Figure A—12

Register: Real Time Clock<3l..0>

31 : 0
i I
15. ... 0. 015............. 0
HHHHHHHHHHHHHHHH LLLLLLLLLLLLLLLL (read)
HHHHHHHHHHHHHHHH —~e———— e (write)
[Hi] [Lo]

. .where,
H..H = high-order value (in 65,536 us)
L..L =

low-order value (in 1 us)-
Figure A-12. Register definition - Real_Time_Clock.

Referring to Figure A-12, both the upper and lower-halves of the Real Time Clock
(RTC.Hi) can be read from during actual operation. However, the lower-half should
not normally be written to because of unwanted side-effects.

Writing to RTC.Lo will cause the write data to override the count function but NOT

-override the clear function of that register. This means that the signal
M_SIXTY_FIVE will clear the counter on its next occurrence. Therefore, there is not
much meaning to initializing RTC.Lo.

Any reads of the RTC must be taken as needed. This means that if the entire 32 bits
must be read, it should be done in a single word-mode operation. Performing this
same function with two serial half-word operations will yield incorrect results. In addi-
tion, any reads of the Real Time Clock have an uncertamty of approximately one mi-
crosecond. For writes; ONLY the half-word mode is acceptable for loading a value
into the RTC.Hi register. This operation should only be attempted after reading the

310 : - . BBN ACI Proprietary Draft: 9/20/88

Butterfly il Hardware Archilecture A _ A: SIGA Specification

RTC.Lo register and determining that it will not overflow when the write is being per-
formed. ' '

When performing reads of the Real Time Clock, the Configuration/Status Unit must
take some special action to ensure that the read data is valid (stable). This is required
because the Switch and T-Bus clocks are not always ensured to be synchronous and
thus the Real Time Clock may be advancing as it is being read. The CSU accomplishes
this goal in the following manner:

When a read request for the Real Time Clock is detected by the CSU, the CSU
immediately asserts the external SIGA pin: T_NSPAUSE_SIGA, and sends a re-

_quest across a handshake synchronizer to the RTC controller logic. The RTC
controller logic then waits for the next occurrence of the one microsecond incre-
ment pulse from: Real_Time_Prescaler <5>. When this occurs, the CSU is en-
sured of having a stable reading from the Real Time Clock for at least one
microsecond. The RTC controller logic then sends an acknowledgment back
across the handshake synchronizer where the CSU, upon detecting this event,
negates T_NSPAUSE_SIGA and allows the data to be read. This is what contrib-
utes to the one microsecond uncertainty mentioned above.

A5.1.1.2.2

Draft: 8/20/88

The CSU relies on the fact that the requesting T-Bus master will ensure that the total
time - from the next occurrence of the one-microsecond increment pulse to the read-
ing of data — will take no more than 1 us. This time includes the synchronizer delay
from the RTC controller, the response time of the CSU, and time for any pauses that
the T-Bus master may assert. Excluding the assertion of those pauses
(T_NMPAUSE _xxoxx) from the T-Bus master, the delay in the SIGA will be:
2*p(R_CLK) + 6*p(T_CLK) nanoseconds. The “p” represents the period of the indi-
cated clock in nanoseconds. Therefore, the T-Bus master should use EXTREME cau-
tion when causing the assertion of T_NMPAUSE_xxxx. Beyond that, the CSU cannot
guarantee the accuracy of the read data!

Time Of Next Interrupt

_The Time Of Next Interrupt or TONI registers, are two 32-bit registers (A and B)

which in combination with the Real Time Clock, are used to schedule an interrupt to
occur at some moment in the future. Both registers, and their associated control logic,
are completely independent from each other although they both interact with the Real
Time Clock.

The TONI control logic performs a 32-bit subtraction between the current TONI_A
(TONI_B) register values and the value of the entire Real Time Clock each time the

BBN ACI Proprietary 311

312

A: SIGA Specification ' ' Butterfly it Hardware Archirecture

OMSP is va_lid. Whenever this subtraction yields a negative {two’s-complement form)
number, the SIGA sets (= 1) the bit: TONIA_Config.Status (TONIB_Config.Status).

Normally, whenever time the Status bit is asserted, an external pin, M_TONIA_INT
(M_TONIB_INT), is also asserted (=1). This can be enabled/disabled - asynchro-
‘nously to the OMSP - by setting the TONIA_Config. Enable (TONIB_Config Enable)
bit to a 1/0. Disabling will force ONLY the pin to a “0”. The associated status bit will

- still reflect the result of the current subtraction. Figure A~13 illustrates the TONI reg-

ister definition. Figure A-14 illustrates the TONIA(B) configuration register defini-

- ton.

Register: Time_Of Next_Interrupt

TTTITTTTTTITTITITT T I TITTTTTTTTTT
- ...where,

T..T = interrupt value

Figure A-13. Register definition - Time_Of Next_interrupt.

Register: TONIA(B) Config

N 1]
——————————————— --E (write)
———————— ——————— SE (read)
.. .where,

E = asynchronously enable external pin

= 0 disable M_TONIA(B)_INT external pin
=.1 enable M_TONIA(B)_INT external pin

status
0 TONIA(B) interrupt is not active
1 TONIA(B) interrupt is active

Figure A-14. Register definition - TONIA(B)_Config.

The actual subtraction that is performed to initiate the interrupt is shown in
Figure A-15. When performing writes to the TONTI register, the Configuration/Status
Unit must take some special action to ensure that the TONI register is not updated in
the middle of the difference operation. The CSU accomplishes this goal in the follow-
ing manner: '

When a write request for the TONI register is detected by the CSU, the CSU

immediately asserts the external SIGA pin: T NSPAUSE_SIGA and sends a re-
quest across a fixed-delay handshake synchronizer to the TONIA(B) controller

BBN ACI Proprietary Draft: 9/20/88

D L B B O ED D OEDOED =D

LY
L)

e O =am

Butieriiy It Hardware Arcriieciure . _ A 5IGA Specification

logic. The TONIA(B) controller logic then waits for the next occurrence of the
OMSP before it actually loads the TONIA(B) register. Because of pipelining, the
TONIA(B) Subtraction Unit is ensured of having exactly one microsecond in
which to complete the subtraction. The TONIA(B) controller then sends an ac-
knowledgment back across the handshake synchronizer where the CSU, upon
detecting this, negates T_NSPAUSE_SIGA, thus freeing-up the T-Bus master.
“This means, of course, that the SIGA will assert T_NSPAUSE_SIGA for approx:-
~ mately one microsecond.

A5.1.1.2.3

Draft: 9/20/88

TONIA(B) Config<l> = 1 IFF,
(TONIA(B)<31..0> - RTC<31l..0>) < O

..where TONIA(B) and RTC are treated as unsigned
32-bit numbers and the difference is treated
as & two’s-complement number.

'Figure A-15. Rule - time of next interrupt calculation.

Priority Time Slot

The Switch protocol provides a mechanism by which initial messages may be trans-
mitted at various levels of priority in order to place an upper bound on remote access
time. Normally, this priority is set by the T-Bus bits, T_PRIORITY < 1..0>, during
the request phase of the T-Bus transaction. In this case, the initial message is trans-
mitted/retransmitted with the priority set during the T-Bus transaction which initi-
ated the message. However, the Requestor can also force these bits to their EXPRESS
value independently of the T-Bus transaction via the Priority Time Siot mechanism.

This mechanism works by assigning each Requestor a particular active time slot which
is based on the value of the Real Time Clock. When that time slot “arrives”, any pend-
ing Initial Switch message in the Requestor will have its priority raised to the EX-
PRESS level (=00). The priority is “sticky” in that once raised to EXPRESS, it
remains there until the T-Bus initiates a new Initial Switch message. This new Initial
message updates the priority with the value of T_PRIORITY <1..0>, as normal.

The equation for determining the active Priority Time Slot is shown in Figure A-16.

Priority Time Slot is active IFF the egquation,
(RTC.Lo<15..0> 1§ PIC.Slot<15..0>) # PTC.Mask<l5..0>
,.is all 1°s

Figure A-16. Rule - priority time slot promotion.

BBN ACI Proprietary . 313

A SIGA Specification Butterfly Il Hardware Archirecture

A51.1.3

314

- This equation takes a slot value (PTC.Si_dt), compares it on a bit-by-bit basis with a

portion of the Real Time Clock (RTC.Lo) and then logically “or’s” the result with the
priority sio: mask (PTC.Mask). It then detects the result for the presence of all “1’s”.
Essentially, the RTC.Lo and the PTC.Slot are compared for equality on a word basis
with some of the bits excluded, or “don’t cared”, in the comparison. A given bit posi-
tion is excluded by setting the corresponding bit position in the Mask subfield to a “1”.
The Mask and Slot subfields, which are defined in Figure A~17, are programmable via
the Configuration/Status Unit. The Priority Time Slot function can be disabled so that
it NEVER promotes the priority of any message by negating (=0) the Con-

- figB.Ena_Priority_Promotion bit. The fully programmable capability of the Priority

Time Slot allows the slot to be valid at different nodes in almost any order. It also
allows the period of occurrence of the slot at a given node to be adjusted from constant
up to65 ms. Of course, the minimum time that a “slot” can be active at a given Reques-
tor is one microsecond. Note that it is possible for the “slot” to arrive while the Re-
questor is sending out bids. This could result in one Bid being sent at lower priority
and the remaining bid(s) sent at EXPRESS priority. However, logic in the Requestor
ensures that no updating of priority occurs DURING Bid transmission. In addition,
no updating will occur while the Requestor is either “idle” or “waiting”. The “waiting”
state is where the Requestor STU is waiting for a slotted/random start criterion to be-
come valid. '

Register: Priority Time_Config<3l..0>

P |
I ¥ Z 015............. 0
S5555855558555885 MMMMMMMMMMMMMMVM
[Slot] ‘ [Mask]

where, .

5..5 = slot value

M..M = mask value

Figure A-1 7. Register definition - Priorit_y_Time_Config.

Note that the purpose of the Priority Slot Value is NOT to ensure that a single high
priority message be present in the Switch at any given time. Rather, the goalis to define
the maximum bandwidth of priority messages to make the servicing of these messages
as predictable as possible. In addition, the Priority Time Slot mechanism only applies
to Initial Switch Messages (locked or not), which are always attempting to make a con-
nection with some downstream node. Subsequent messages do not send Bids and thus

 are not affected by the Priority Time Slot mechanism.

Function Request Types

The Requestor handles various types of function requests from a T-Bus master. Those
functions include read and writes of either bytes, words, or multiple words. Bytereads/
writes may be of one to four bytes but must NOT wrap across word boundaries.

BBN AC! Proprietary Draft: 9/20/88

- |

Butterfiy Il Haraware Architeciure o o A SIGA Speciicaon

A5.1.1.4

It is important not to violate word wrapping because the Requestor does NOT check
for this condition. Word reads/writes MUST be word-aligned and multiple read/

writes are limited to a maximum of four words.

T-Bus Request Screening

T-Bus requests to the BIU of the Requestor are screened for both context errors and
T-Bus protocol errors before any action is taken on them. Protocol errors include such
things as a T-Bus master requesting an illegal (=00) T_PRIORITY field or illegally
wrapping across word boundaries. Currently, protocol errors are NOT detected. Con-
text errors, mostly relating to errors in handling locking, are listed in Figure A-18.

NOTE

A5.1.1.5

Draft: 9/20/88

1. Requestor was asked to access a node within a locked sequence which is different
than the node which opened that sequence. (Lock Address Error)

2. Requestor was asked to MAINTAIN a remote lock when it was never opened.
(Maintain Present Error)

3. Requestor was not asked to MAINTAIN, BYPASS or OPEN a lock that was not
yet explicitly released with FREE-LOCK. In other words, a NORMAL was is-
sued while the Requestor was locked. (Maintain Absent Error)

Figure A-18. Requestor T-Bus screening errors.

Any of these errors will cause the Requestor to return an ERROR response with the
appropriate error code on the T-Bus (See: “Error Detection and Reporting”). Inaddi-
tion, no Switch message will leave the STU. If the Switch path happens to be locked,

- any of these errors will also cause the BIU to initiate a sequence which will tear-down
the Switch path (drop-lock) providing certain conditions are met. See “Locked Se-
quences” for more details.

B T N T, e T T T T T e T T N T R R R T T T T T T T T T R R T T R T Y

The Requestor, if unlocked, will treat a BYPASS in the same manner as a NORMAL
Function Request; that is, it will NOT open a lock.

T L e S

Initial Message Start/Retry Criterion
The Requestor can use one of several different methods to decide when to first begin

transmission of an Initial Message and when to retry that transmission if the Switch
rejects it. These methods are referred to as: slotted, random and immediate. The start

BBN ACI Proprietary : 318

A: SIGA Specification Butterfiy il Harcware Ardﬂrecture

A.5.1.1.5.1

transmission time can be programmed to correspond to either one of two fixed time
slots, one of two random numbers, or immediate transmission. The retry can corre-

spond to either one of two fixed time slots or one of two random numbers, Only some

combinations of these start and retry criterion are available for a given initial message.

" The operation of random and slotted start and retry are described first. The process of

selecting the various random/slotted start and retry criterion for a given message is
then explained.

Random Start/Retry

‘There is a random number generator associated with the start/retry criterion. The gen-

erator is 12 bits long and is continuously updated at the Switch frequency. Each time
aninitial message start/retry occurs and the random backoff is selected, a new random

- number is transferred from the generator to a 12-bit count-down counter. This count-

er, known as the backoff counter, also runs at the Switch frequency. When the backoff
counter reaches -1, the Requestor is released to start/retry the initial message trans-

mission.

Before the backoff counter is actually loaded with the random number, that number is

. logically “anded” with a 12-bit backoff mask. When the Requestor first attempts the

318

start/retry of an initial message, the backoff mask is initialized, forcing some number

of most significant contiguous bits of the random number to zero as they are loaded

into the backoff counter. After a certain number of Switch rejects for the same initial
message, the mask is “shifted left” to allow an increase in the maximum allowable value
of the next 12-bit random number loaded into the backoff counter. Thus, the random
backoff limit, in terms of Switch intervals, is a binary number of length 12, or 4096.
Each time a Switch reject is encountered, the Requestor makes a decision about
whether or not to shift the backoff mask. That decision is made by adding a constant
number to an accumulator after each Switch reject. Each time the accumulator over-
flows, the mask is shifted. Therefore, the mask may not change for several Tejects.

In implementation, a register specifies randomization characteristics for the random
start/retry criterion. This register is duplicated to allow for two sets of characteristics
to be stored simultaneously. The mechanism for choosing one set or the other is de-
scribed in a subsequent section. Each register is 8 bits long and specifies the initial
mask setting, the constant value for accumulator addition and whether or not immedi-
ate start transmission is requested. These registers, and the random specifications
which they describe, are subfields of the Transmit_Time_Config Register known as
“Random0” and “Random1”. Figure A-19illustrates the structure of the random reg-
isters. Referring to Figure A-19, the immediate field, “I”, when “1”, forces an initial

- random start to be immediate, ignoring any randomization parameters. For initial
retries, the “I” field is ignored and the randomization parameters are always used. The

constant value for accumulator addition is specified by the “EE” field. This number is
added to a 3-bit accumulator, which is then tested for overflow. The initial backoff
mask is specified by the 5-bit identifier, “MMMMM?”, which is loaded directly into a
Johnson Counter. The output of the Johnson Counter is decoded to derive a 12-bit

BBN ACI Proprietary Draft: 9/20/88

Bl =0

Ty

Butterfly il Hardware Architecture o e e _ A: SIGA Speciiication

backoff mask as shown in Figure A-20. Figure A-20 also shows how the counter
vances once loaded with an initial value. This advancement, of course, is governec

_the overflow of the 3-bit accumulator. Also note that the LSB of the backoff mask ¢ .

never be cleared.

Register: Transﬁit;Time_Config.Random0<7..0>.
Transmit_Time Config.Randoml<7..0>

immediate
accumulator addition constant
initial comparison mask

1
]
LI |

Figure A-19. Register definition - Transmit_Time_Config.Random0,1. |

mask
identifier<5..0> backoff mask<1l..O>

increasing 000000 000000000001
count 000001 - - 000000000011
| 000011 000000000111

| 000111 000000001111

| 001111 000000011111

| 011111 000000111111

[111111 ' 000001111111

i 111110 000011111111

| © 111100 : 000111111111

| 111000 001111111111

| 110000 011111111111

v 100000 111111111111

Draft: 8/20/88

Figure A-20. Random start/retry bit mask encoding.

During the INITIAL start/retry, five of the mask identifier bits related to the initial
message are specified by the “MMMMM” field in the random register. The sixth, most
significant bit is ALWAYS initialized to “0”. So, if MMMMM = “11111", the initial
backoff identifier would be: “011111”. In this case, the maximum possible random
backoff is “1111110”, or 128 Switch intervals (recalling that the backoff counter over-
flows at -1). Once the maximum identifier of “100000” has been reached, the counter
“wraps around” and thus the next backoff mask will be “000000”. The “muitiply by
two” effect of the left-shifting backoff mask is intended to implement an exponentially
increasing random backoff. An equation summarizing the preceding discussion is
shown in Figure A-21.

BBN ACI Proprietary _ 317

A: SIGA Specification : , Butterfly Il Hardware Archirecture

The initial mask identifier MUST be a value which would result in a legal Johnson
‘Counter value as shown in Figure A-20. Legal Values would be: “00011” or “01111” for.
example. Illegal values would be: “00100” or “10110”, for example,

[M + int(R*E/8)]

- Maximum backoff (Switch intervals) = 2

. .where,

M = initialized value of MMM bits
R = number of rejects
E = value of the EE bits

Figure A-21. Equation - maximum exponential random backoff.

A.5.1.1.5.2 Slotted Start/Retry

318

Slotted start and retry involves holding-off transmission based on the “arrival” of a
pre-specified time slot. Once a slot has “arrived”, a message assigned to that slot for
starting can start transmission, and a message assigned to that slot for retry can retry
transmission. The time slots are derived from the comparison of the Real Time Clock
and a register used to specify the slot characteristics. This register is duplicated to
allow for two sets of characteristics to be stored simultaneously. The mechanism for
choosing one set over the other is described in a subsequent section. Each register is 8
bits long and specifies the comparison mask, the comparison value, and whether or not
immediate start transmission is requested. These registers, and the slot specifications
which they describe, are subfields of the Transmit_Time Config Register known as
“Slot0” and “Slot1”. Figure A-22 shows the structure of the slot registers.

BBN ACI Proprietary Draft: 9/20/88

Y

|~

Butierlly H Rardwaig AIChiecie : ' _ _ Al biaA Specificaton

Register: Transmit_Time_Config.Slot0<7..0>,

Transmit_Time_Config.Slotl<7..0>

Teeensn 0
IMMDDDDD
...where,
I = immediate
MM = mask specification
00 4.0 us slot period
01 2.0 us slot period
10 1.0 us slot period
11 ©.5 us slot periocd
DDDDD = phase specification (restricted, see text)
Figure A-22. Register definition - Transmit_Time_Config.Slot0,1.

Referring to Figure A-22, the slot register contains three sub-fields: the compare
mask field, specified by the two bit number, “MM”; the compare data field, specified
by the five bit number, “DDDDD”; and immediate field, “I”. The immediate field,

when “1”, forces an initial slotted start to be immediate, ignoring any slot parameters.

For initial retries, the “I” field is ignored and the slot parameters are always used. The
comparison for an active slot is made partially by comparing bits of the “D’”” sub-field
with bits of the of the Real Time Clock and Real Time Prescaler. The “M” sub-field is
used to either compare some of those bits with zeros or to ignore them in the compari-
son. This operation is shown in Figure A-23.

given, nnnnnnnn = RTC.Lo<l..0> | RTP<5..0>

mm
00
ol
- 10
11

compare with cycle period
000DDDDD nnnnnnnn 4 us
X00DDDDD NNNNNNNn 2 us
XX0DDDDD NNNNNNNnN 1 us
XXXDDDDD nnnnnnnn .5 us

Figure A-23. Rule - start/retry valid slot comparison.

Referring to Figure A-23, the D field can only take on values that are less than or equal
to the setting of the Real_Time_Prescaler<4..0>. '

Draft; 9/20/88

BBN ACI Proprietary 319

A: SIGA Specification | Butierfly Il Hardware Archirecture

A5.1.1.53

320

Values outside this range may cause the message to never be transmitted, and are
therefore illegal.

Figure A-23 also demonstrates the two properties of the slots: frequency and phase.
The D field allows setting a number of phases equal to the setting of REQ_Confi-
gA.Real_Time_Prescale<4..0> plus one. The M field allows the comparison to occur
at varying time intervals.

Because of hardware limitations, the concatenated quantity, (RTCLo<1..0> |
RTP <5..0>), does not act exactly like an eight bit counter. The RTP portion is actual-
ly running one switch interval “ahead” of the RTC.Lo< 1.0> portion. This means
that the RTC actually increments on the 000000-t0-000001 transition of the RTP por-
tion, rather than on the 111111—to—000000 portion. A sample transition would look like
that in Figure A-24.

RTC.Lo<l..0> = RTP<5..0>

10 . 11111100
10 11111101
10 11111110
10 11111111
10 00000000 -
11 o 00000001
11 00000010

11 00000011

Figure A-24. Start/retry slot comparison count sequence.

Start/Retry Criterion Selection

A function request from a master on the T-Bus is transformed into a Switch message
by the Requestor. Depending on certain parameters of that function request, the Re-
questor categorizes the message into one of four Message Classes. Each of these
classes will have a different start and retry criterion. The correspondence of start/retry
criterion based on message classes is shown in Figure A-25.

Class Start ' ’ Retry

00 Slot0/Immediate Sloto
0l Slotl/Immediate Sloti
10 Random0/Immediate RandomO
11 Randoml/Immediate Randoml

Figure A-25. Start/retry criterion based on message classes.

. BBN AC! Proprietary Draft: 9/20/88

DO O D D D S

y

oo |

Butterfly Il Hardware Architeciure

Draft: 9/20/88

A: SIGA Specification

A class is selected for each Switch message based on the state of three bits of T-Bus
function request that initiated the message. Those bits are the T-Bus signals
T_LOCKOP <1> and T RR<1.0>. The Requestor uses the encoded state of those
three bits to “look up” the class of the message. The lookup table itself is a 16-bit
register known as the Message_Classification Register. This register is defined in
Figure A-26.

Register: Message_Classification<15..0>

15 ' 0
| ' |
10 10 10 1.0 10 10 10 10
cc ecc € ¢ ¢ C¢ ©C CC
[A] [B]l [C1 (Dl ([E]l [F1 [G] [H]

...where given that nnn = T_LOCKOP<1> | T_RR<1..0>,
the subfields selected and the type of function
request that selects them are, '

nnn

Subfield Function Request
000 MC.H Unlocked wWrites
001 MC.G Unlocked Reads
010 MC.F Auxiliary Unlocked Writes
011 MC.E Auxiliary Unlocked Reads
100 MC.D Locked Writes
101 MC.C Locked Reads
110 MC.B Auxiliary Locked Writes
111 MC.A Auxiliary Locked Reads

Figure A-26. Register definition - Message_Classification.

Toillustrate the Message Start/Retry Criterion selection with an example, suppose that
a function request to the Requestor may have set, (T_LOCKOP <1> | T_RR<1.0>)}
= 100. From Figure A-26, this would cause the Requestor to look in the Message
Classification register “D” subfield (for Locked Writes). In this subfield, the Reques-

- tor would find the “class of message” corresponding to the particular function request.
If the “D” subfield were a “10”, that particular message would have use the parameters
in Random0 register for both message start and retry.

Both the Start/Retry Random and Start/Retry Slot registers are actually subfields of
the Transmit_Time_Config Register. The bit definition for this register is illustrated in
Figure A-27.

BBN ACI Proprietary ' ' 321

A: SIGA Specification ‘Butterfly il Hardware Archirécture

NOTE

A.5.1.1.6

A5.1.1.6.1

322

‘Register: Transmit_Time_Config<3l..0>

31 ¢
I I
Tovevnn 0 Tevuenn 0 K 0 Toviuis)
IMMMMMEE IMMMMMEE IMMDDDDD IMMDDDDD

[Randoml] [Random0] [Slotl} {Slot0]

..wheré, Random0Q, Randoml, Slot0 and Slotl
are previously defined

Figure A—27. Register definition - Transmit_Time_Config.

B o e T e

Function requests can be forced to completely ignore the Message Classification regis-
ter on a request-by-request basis. This occurs whenever a request is made and the
T-Bus signal: T_SYNC is asserted (=1). In this case, the message is automatically
classed as “00” and both initial transmission and retry criterion is taken from the
Transmit_Time_Config.Slot0 register.

o, e, M e T M M, e M, M M, M, T, M, M, T, M, M, ™

Switch Tx Protocol Timers

The Requestor contains timers which monitor the progress of the transmitted message
and alert the Requestor if they detect an error condition. Specifically, there are two
timers, the Reject Timer and Connection Timer. The Reject Timer determines how
long the Requestor will attempt to open a Switch path in the face of Switch rejects. The
Connection Timer monitors how long the Requestor will keep a Switch path open once
the rejection period is finished. Parameters for both the Reject Timer and the Connec-
tion Timer are contained in the Protocol_Timer_Config Register.

Reject Timer

The Reject Timer is enabled at the beginning of the first attempt to transmit an initial
message. Each time the Requestor receives a reject, it first examines the Reject Timer.
If the timer has underflowed (the underflow is latched), the Requestor halts the trans-
mission attempt and returns the Rej_TO Error code to the T-Bus master. The Re-
questor also tears-down the Switch path whether or not it was locked. Parameters for
the Reject Timer are located in the Protocol Timer_Config Register.

The Reject Timer is structured as a 4-bit down-counter clocked by a selectable pres-
caled time base. The reload value for the counter is contained in Protocol_Timer_Con-
figCnt<3.0>, A 4-bit prescale - parameter, located in

BBN ACI Proprietary Draft: 8/20/88 -

==

Butterfly I Hardware Acchitecture ‘ , : _ A: SIGA Specification

Protocol_Timer_Config.Pre <3.0>, is used to select the desired prescale time base

from one of sixteen possible frequencies. Those frequencies are derived from the low-

to-high transition of bits of the Real Time Clock, Real_Time_! Clock.Lo<15.0>, as
illustrated in Figure A-28. The Reject Timer is continually loaded with
PTC.Cnt <3..0> until it begins transmitting Bid #1 An equation for the maximum
Reject timeout is shown in Fxgure A-29.

PRE Q PRE Q
0000 0 1000 8
0001 1 1001 9
0010 2 1010 10
0011 3 1011 11
0100 4 1100 12
0101 5 1101 13
0110 6 1110 14
0111 T 1111 15
. .where,
PRE Protocol_Timer_Config.Cnt<3..0>

Q selection from Real Time_Clock.Lo, bit @

Figure A-28. Reject timer prescale selection.

A.5.1.1.6.2

Draft: 8/20/88

given,

CNT = Protocol_Timer_Config.Cnt<3..0>
PRE = Protocol Timer_Config.Pre<3..0>

...then,
(PRE + 1)
Timeout = CKT * 2 - microseconds

(PRE + 1)
..with an uncertainty of 2 microseconds

Figure A-29. Equation - reject timeout.

Connection Timer

The Connection Timer is loaded each time the Requestor sends Bid 1. This means that
it is reloaded both just before transmitting an initial message and after the Requestor
receives each Switch reject. Like the Reject timer, its underflow condition is latched.

The Connection Timer's timeout has two different effects depending on when it occurs.
If the timeout occurs while the Requestor is waiting for a message acknowledgment
(M_ ACK) the Switch path is torn-down (whether locked or not) and a Conn_TO Er-
ror is returned to the T-Bus master. If the timeout occurs while a Switch. path is
locked, but after the M_ACK was received, the Requestor will tear-down the Switch

BBN ACI Propristary - 323

A: SIGA Specification , Butterfly i Hardware Archi_recturé

path but cannot return an error to the T-Bus master immediately. Rather, it waits until
the next T-Bus master makes a request to return a Wait_TO Error. In the “race condi-
tion” case where the M_ACK and connection timer underflow occur on the same clock
edge, a Conn_TO Error is detected.

The Connection Timer is structured as an 8-bit down-counter clocked at 1MHz by a
bit from the Real Time Prescaler, Real Time Prescale <5>. The counter underflows
at -1. The reload value for the counter is contained in, Protocol_Timer_Con-
fig.Con<7.0>. The equation for the maximum connection timeout is shown in
Figure A-30.

given,

CON = Protocol_Timer_Confié.Con<7..0>
then,

Timeout = CON + 1 microseconds

... with an uncertainty of 1 microsecond

Figure A~-30. Equation - connection timeout.

A.5.1.1.6.3 Protocol Timer Programming

A5.1.1.7

324

As previously mentioned, the parameters for the Protocol Timers are contained in sub-
fields of the Protocol_Timer_Config Register as shown in Figure A-31.

Register: Protocol _Timer Config<l5..0>
15 : 0
I I
3.0 3..0 7T...... 0

ccce PPPP NNNNNNNN
[Cnt] [Prel ({Con]

...where, Cnt, Pre and Con have
been previously defined.

Figure A-31. Register definition - Proiocol_'i‘imer_Conf_ig.

Anticipation Support

The operation of the Requestor has two main goals: (1) to pass a T-Bus function re-
quest to the Switch as quickly and efficiently as possible, and (2) to return the corre-

- sponding function response from the upstream Switch message to the T-Bus master as

quickly and efficiently as possible. Certain techniques can be used to take advantage
of the expected operation of the logic in the function request and response path. These

BBN AC! Proprietary Draft: 9/20/88

M B D D D T

[—

Butterfly il Hardware Architeciure o _ A: BIGA Specincation

AS51.1.7.1

techniques are known collectively as “anticipation”. The use of anticipation in achiev-
ing the two main goals of the Requestor are now discussed. :

Function Requests

‘Maximizing downstream function request efficiency in the Requestor involves balanc-

ing the desire for speed with the desire to maintain a streamlined Switch protocol.

These tradeoffs become apparent when considering a multi-word write sequence.

Here, the Requestor could signal its Switch Transmit Unit to begin transmitting as

soon as possible after receiving the T-Bus request. This would always work if the T-
Bus were guaranteed to supply all words of a multi-word transfer at a bandwidth
equivalent to the bandwidth of the Switch. However, this will not always be the case as

the variations between the clock frequency of the T-Bus and the Switch, combined
with the ability of the current T-Bus master to assert PAUSE, create the possibility of
the STU “running out of data” in some circumstances.

.. To circumvent this problem, two immediate options are available. First, change the

Draft: 9/20/88

Switch protocol to allow the insertion of “nult data word” fields when data is not avail-
able. Second, the Requestor could be programmed to signal the STU to start only after
a specified number of words have been written during the data portion of the T-Bus
transfer. The first alternative is unattractive because it increases Switch bandwidth
and unnecessarily introduces complexity into the Switch message protocol. The sec-
ond option is therefore implemented in the Requestor. The programmed parameter is
known as, FQ_Anticipation, and can be set to any of the threshoids listed in
Figure A-32.

Register: Requestor_ConfigA.FQ_Anticipation<2..0>

210 Anticipation

000 after first data word transferred
001 = after second data word transferred
010 after third data word transferred
011 after fourth data word transferred
1%X immediately after T-Bus request

Figure A-32. Register definition -
Requestor_ConfigA.FQ_Anticipation<2..0>.

Since it is possible for the FQ_Anticipation to be set greater than the last word of a
particular write, the Requestor will commit to transmission when either the last word
has been written OR the Requestor FQ_Anticipation threshold has been reached -
whichever occurs first. For example, if FQ_Anticipation were a “011” and a three word
write occurred, anticipation would take place after the third word were written. In

~ addition, an Interleaved request (I_INTERLEAVED=1) will cause a “IXX" setting

tosignal the STU in the cycle AFTER the T-Bus request. The threshold should be set
based on the T-Bus and Switch clock frequencies, the maximum number of PAUSE
assertions expected during a write, and the handshake synchronizer delay setting.

BBN ACI Proprietary 325

A: SIGA Specification | ' 7 Butterfly II‘Hardware Archirecture

A5.1.1.7.2

A.5.1.1.8

326

Because of current hardware restrictions, FQ_Anticipation MUST be set to 1XX.
Therefore, any T-Bus master MUST be able to supply write data fast enough to pre-
vent the Switch message from running out of data.

Function Responses

Anticipation during function responses would allow the Requestor to take advantage
of the synchronizer settling time by beginning the T-Bus request BEFORE the mes-

- sage checksum has been verified. Unfortunately, the Requestor is limited in the

amount of anticipation that it can provide. Whatever anticipation the Requestor can
extract from an upstream message, that anticipation has to be constant over all mes-
sages. This is because the Requestor STU-to-BIU handshake synchronizer has to
compensate for message anticipation and cannot have its setting varied according to
the expected upstream message type. And of course, even if the anticipator could vary
its setting, the return message profile is not always known.

In fact, the Requestor SRU must assume a minimum expected upstream message
length before starting anticipation. That minimum message length is two bytes. And
since the SRU cannot tell if the assertion of Reverse is a Reject until the second byte,
the minimum anticipation of the Checksum byte is one Switch Interval (for a function
response to a write request). This then limits anticipation of all messages to one byte.
By comparison, the Server has a minimum message length of 5 bytes and can thus take
greater advantage of anticipation techniques.

As previously mentioned, Switch to T-Bus anticipation usually requires some mini-
mum setting on the receiving T-Bus synchronizer. However, it turns out that no MINI-
MUM setting of Req_ConfigA.BIU_Synch <3..0> is required to compensate for the
small amount of Requestor SRU anticipation. This is because pipeline overhead al-
ready accounts for this anticipation. However, a minimum setting IS required to meet
the minimum settling time for the synchronizer. For more details on this subject, see:

“Special Topics/Synchronization”,

Locked Sequences

Sometimes an upstream T-Bus master wishes to perform several consecutive function
requests to a locked remote T-Bus slave without the overhead of opening the Switch
connection before each request. A mechanism known as Switch locking atfows such
multiple accesses by keeping the Switch path open between function requests. All
transactions that take place during locking are known as locked sequences. A locked
sequence has three distinct events: opening, maintaining and closing. Each of these
events has different characteristics and restrictions for the Requestor.

BBN ACI Proprietary Draft; 9/20/88

N N 2N CEm i S

Butterfly Il Hardware Architecture R y A: SIGA Specification

A5.1.1.8.1

A.5.1.1.8.2

Opening and Maintaining Locks

Opening a Switch lock begins with an otherwise normal function request from a T-Bus
master that carries with it a request for “opening a lock™ to a remote T-Bus slave. The
upstream Requestor transfers the OPEN lock request to the downstream Server via a
bit in the message protocol. Since the Switch path has not yet been established, either
the Switch or the downstream Server may reject the message. A Switch reject will oc-
cur because of normal Switch contention and the Server reject will occur if the down-
stream target was locked. The Requestor, not knowing the source of the Switch reject,
will simply retry the message transmission within the constraints of the Protocol Tim-
ers. '

Assuming that the message finally does “get through” to the downstream Server, that
Server “opens a lock” to the target T-Bus slave in accordance to the T-Bus protocol.
Meanwhile the upstream Requestor, recognizing that it has established the beginning
of a locked sequence, does not normally tear~down the Switch connection upon receiv-
ing an M_ACK unless an error was detected. This is discussed in detail in the “Auto
Drop” section. :

Once a locked Switch path is established with OPEN Jock, it must be explicitly in-
structed to remain open by the upstream T-Bus master. This is accomplished by fol-
lowing the OPEN function request with either: another OPEN, a MAINTAIN, or
BYPASS function request. Essentially, the Requestor takes no special action on either
of these requests but does demand their presence. If the OPEN/MAINTAIN/BYPASS
protocol is violated by subsequently initiating a NORMAL function request, the Re-
questor will respond to the offending T_Bus master with an ERROR and tear-down
the Switch path. This mechanism is described in the “T-Bus Request Screening” sec-
tion. '

Dropping Locks

The Requestor has a flag, known as the “drop-lock request” flag, which causes the |
Requestor to negate Frame and return to its uniocked Idle state. Although the flag
does not cause this action until the Requestor BIU is in its Locked Idle state, it can be
set at any time. Once set, a drop-lock condition is said to be active. There are three
distinct scenarios under which a drop-lock condition may occur: (1} A T-Bus master
which is locked to the Requestor may issue a FREE-LOCK, (2) The Requestor issues
an ERROR response (under certain conditions), and (3) a Connection Timer timeout.

Whatever the cause of the drop-lock condition, the Requestor BIU waits until it re-
turns naturally to its Locked Idle state before taking action. Once there, the Requestor
BIU will then enter the “unlock” state in which it will fulfil the drop-lock request flag
by commanding the Requestor STU to negate Frame. During this state, the Requestor

~ BIUwill issue a REFUSED response to ANY T-Bus Master that accesses it. Once the

Draft: 9/20/88

Requestor BIU has been signaled by the STU that Frame was negated, the BIU returns
to its Unlocked Idle state. Of course, the drop-lock request flag is then also negated.

BBN ACI Proprietary 327

A: SIGA Specification Butterfly Il Hardware Archirecture

A.5.1.1.8.3

328

The downstream Server, knowing that it was previously locked, interprets the subse-
quent loss of its incoming Frame to be a FREE-LOCKS. The Server, sensing an unex-
pected loss of Frame, then issues a FREE-LOCKS to the local T-Bus.

The first drop-lock scenario - a FREE-LOCKS issued by a T-Bus master - is the most
conventional. The FREE-LOCKS request is the only function request that is NOT
explicitly transmitted to the downstream Server in the form of a message. Instead, the
Requestor responds to a FREE-LOCKS by negating Frame to the Switch interface.

Because the drop-lock condition can be entered at any time, a T-Bus master can issue
a FREE-LOCKS at any time - whether the Requestor is idle or acting on a current
split~cycle. However, the Requestor must be already locked to the T-Bus master
which made the request. If not, the BIU will ignore the FREE-LOCK request.

In the ERROR response scenario, the Requestor will NEVER enter the drop-lock
condition when the ERROR response is due to 2 Remote Class Error. However, it
MAY enter the drop-lock condition when the ERROR response is due to an FQ or
Switch Class Error. This conditional action is described in the “Auto Drop” section.

Error classes are discussed in the “Error Detection and Reporting” section. However,

if those conditions ARE valid for a drop-lock, the Requestor processes the drop-lock
in the same manner as the FREE-LOCKS scenario. Unlike the FREE-LOCKS how-
ever, drop-lock processing takes place almost immediately after the event which
caused the drop-lock condition (responding with an ERROR). This is because the
Requestor BIU always enters its Locked Idle state immediately after issuing an ER-
ROR response.

The Connection Timer timeout scenario is slightly different from the previous two.
When the Connection Timer times—-out, it indirectly causes the drop-lock condition by
eventually causing an ERROR response (Wait_TO or Idle_TO) by the Requestor BIU.
This normally would be sufficient because the BIU would then enter the drop-lock
‘condition, which would then signal the Requestor STU to negate Frame. However, one
of the reasons that the Connection Timer may have timed-out was because the Re-
questor BIU had lost its T-Bus clock (T_CLK). In this case, Frame would never get
negated. Therefore, the Requestor STU takes the initiative to negate Frame immedi-
ately after a Connection Timer timeout. For consistency, the drop-lock mechanism

continues as normal. When the Requestor STU finally gets the request from the BIUto
negate Frame, the STU simply ignores that request.

Auto Drop

Auto drop is a parameter set by the Req_ConfigA.Ena_Auto_Drop bit. When as-
serted (= 1) the Requestor will be permitted to enter the drop-lock condition whenever
an ERROR response is generated because of an FQ or Switch Class error. Otherwise,
the Requestor will NEVER enter the drop-lock condition due to an ERROR response.
This is because the only other class of Requestor error - Remote Error - will NEVER
cause the drop-lock condition.

BBN ACI Proprietary Draft: 9/20/88

SN N

Buttertly I Hardware Architeciure AR A: SiGA Specilicalion

A.5.1.1.9

NOTE

Stolen Bit Support

Because of the structure of the Switch message format, only one bit of Stolen informa-
tion can be transferred between upstream and downstream nodes during a given mes-
sage. The Requestor records the state of the Stolen bit during the word transferred ina
byte write operation. It is this state that is reflected in the Switch message. Normally,
the Requestor expects the Stolen bit to be asserted only during 2a BYTE write opera-
tion. In fact, it is illegal to assert the Stolen bit to the Requestor during a multi-word
operation. '

NN N N M R R N R R R R R R R R R R R R T RO OO RO R RS

If the Stolen bit IS asserted during a multi-word write, the state of the first word writ-
ten is recorded. '

o, T T, T N T N N O R T N N T T T T e M T e B

The Requestor provides a mechanism to verify that the Stolen bits of all words in a
multi-word write are zero, and prevent the message from being transmitted if this is
not the case. The Ena_Stolen_Verify bit in the Req_ConfigB register, when asserted,
will enable this verification of Stolen bits in a multi-word write. There is however, a
small price to pay for this feature: the FQ_Anticipation register must be set to its
MAXIMUM value {=011). This is because the Requestor must load all words of a
multi-word write and verify the Stolen bits before committing to transmission. The
Requestor cannot “call back” the outgoing message. Figure A-33 summarizes the
rules for verifying the Stolen bit. If the rules of Figure A-33 are adhered to and a par-
ticular multi-word write has some of the Stolen bits asserted, the Requestor will re-

- spond with an ERROR (“Stolen_Verify” error code) to the T-Bus master. The

Requestor, of course, will NOT transmit the message in this case.

To enable the verification of Stolen bits on a multi-word writes,

1) Set FQ _Anticipation = 011, AND...

2) assert (=1) the Req_ConfigB.Ena_Stolen_Verify bit

Figure A-33. Rules ~ Stolen bit verification — multi-word write.

Draft: 9/20/88

For single-word reads, the Requestor presents to the T-Bus a Stolen bit
(T_AD <32>) which is the same state as the Stolen bit in the upstream Checksum
byte. For multi-word reads, the Requestor always assumes that the words of the trans-
fer are NOT Stolen until it encounters an asserted Stolen bit in the Checksum byte.
When this occurs, only the last word received by the Requestor is assumed to be Stolen.
This fact is transmitted to the T-Bus by asserting T_AD <32> during the transfer of
the last word on the T-Bus.

. BBN ACI Proprietary - 329

A: SIGA Speciification ‘ : Butlerﬂy Il Hardware Archirecture

A.5.1.1.10

A5.1.1.11

330

Quick Drop

Due to current hardware restrictions, Ena_Stolen_Verify must ALWAYS be negated
(=0). Therefore, multi-word writes CANNOT be screened for stolen bits by the Re-

questor. This must be handled by the T-Bus Master.

The Requestor STU has an option which enables it to negate Frame during an Initial
Message as soon as the STU detects an asserted Reverse. This can be done without the
STU actually waiting to see if Reverse is going to be a Reject or an actual message. This
action is allowed only when the STU is transmitting an Initial Message (NOT an Initial
Locked Message) because in this situation, the only possible responses are: Reject or
an upstream Switch message. Ineither case, the Requestor will negate Frame immedi-
ately if the bit: Requestor_ConfigB.Ena_Quick_Drop is asserted (=1). Essentially,

" Quick Drop is an optimization which will free up the Switch earlier - although only by

one Switch Interval - than if Quick Drop were not enabled.

Reverse Profile Monitoring

The Requestor is enabled to monitor the profile of Reverse for errors asserting (= 1)
the Req_ConfigB.Ena_Rev_Err bit. Once enabled, the Requestor will report a Switch

' Class Error (Reverse_ Error) whenever it observes an incorrect state for Reverse dur-

ing an upstream message. Since there is more than one possible Reverse profile for a
given Function Request, not every Switch Interval of Reverse can be checked for a giv-
en state (0/1) because either state may be valid. However, when the Reverse profile is
incorrect in ANY place that is checked, a Reverse_Error is reported.

Figure A-34illustrates how the Requestor checks the Reverse profile. The “x’s” repre-
sent where either state is valid and is therefore not checked by the Requestor.

BBN ACI Proprietary Draft: 9/20/88

e D o D

Butterfly H Hardware Architecture o N A SiGA Specilicauon

TYPE #WORDS RETURN MSG FORMAT

+--~ first received
i
v
write any xxL
read non-multi . X%xxHH,HL
two-words XxHH, HL

" xxHH, HxHH, HL

three-words XXHH, HL
1 xxHH, HxHH, HL
" xxHH , HXHH , HxHH , HL

four-words xxHH,HL
" xXBH, HxHH , HL
" xxHH, HxHH , HxHH, HL
" xxHH,HxHH, HxHH, HxHH, HL

. .where,
X = don"t care
H = check for Reverse =1
L = check for Reverse = 0

Figure A-34. Requestor Reverse profile monitoring.

NOTE .\"-..“'-."'-.."'-,‘x"‘-ﬂ‘x.‘&‘\"‘&“&"‘&"‘u“\.‘m“‘u“\..""u"u‘\."k"-»..\“h\“\u"\"’\.\XNM\KM\N‘F\"\K‘\‘\.\\.K

The Requestor will NOT specifically check that Reverse was negated (=0) when the
Function Request was initiated. However, it DOES begin looking for a 0-to-1 transi-
tion of Reverse in order to recognize the beginning of the upstream message. There-
fore, if Reverse were to be “hung high” when the Requestor began its Function
Request, the Requestor would eventually timeout the Connection Timer.

e N N T e T R T T N N U T T T R T R R R R R RO T T T O R T

A.5.1.1.12 Error Detection and 'Reporting
Errors delivered by the Requestor to an initiating T-Bus master can be divided into

three classes depending on which part of the SIGA detects them. The classes are: 1)
FQ Errors - which are detected by the BIU from the original Function Request; 2)

Draft; 9/20/88 BBN ACI Proprietary : 331

A: SIGA Spéciﬁcation | Butterfly Il Hardware Archirecture

Switch Errors - which are detected by the STU and SRU because of Switch interac-
tions and 3) Remote Errors - which are detected by the downstream Server and are
“reflected” up to the initiating T-Bus Master.

For a given Function Request/Response sequence, errors from different classes can
occur simultaneously. Since only one error can be reported at a time, a sense of “prior-
ity” exists between error classes. If there is a FQ Ervor, it always be reported, regard-
less of the presence of Switch or Remote Errors. If there is no Local Error, than any
Switch Errors will be reported, regardless of the presence of Remote Errors. If there is

neither a Local nor a Switch Error, then and only then will any Remote Errors are re-
_ported. :

Figure A-35 shows the Error Codes for the Requestor which include the FQ and
Switch type errors. Note that WITHIN a given Error Class, the errors are again not all
mutually exclusive, and are therefore given “within-class” priorities. A more detailed
description of the three Error Classes follows.

Requestor Error Codes:

Check-(8) Switch

7 0

[

PPPPdcba

d ¢ b a Requestor Error Class

0 000 Maintain_Absent-(la) FQ

0 0 01 Maintain_ Present-(1b) FQ

0010 Stolen Verify(2) FQ -

0 011 Lock_Address-(3) FQ

0100 Wait_TO-(4a) - Switch

0101 Idle_TO-(4b) Switch

0110 Rej_abort(s) Switch

0111 Rej_TO-(6) Switch

1000 Reverse-(7) Switch
1001

. ..where,

. P..P = Requestor_ConfigA.Error_Prefix<3..0>.

Priority is from highest (1) to lowest (8).
Within a given priority, errors are mutually
exclusive (i.e., 4a,b...).

Figure A-35. Requestor error codes.

-A.5.1.1.12.1 FQ Errors

332

FQ Errors are detected by the BIU during the original Function Request. Their detec-
tion, when enabled, will ALWAYS prevent the Function Request from initiating a
Switch access. If the Requestor is unlocked, it will NOT assert Frame after detecting

BBN ACI Proprigtary Draft: 9/20/88

Y
)

=l = ==

Butlerfly Il Hardware Architecture R A: SIGA Specification

an FQ Error. If the Requestor is locked, it MAY immediately tear-down the lock if
certain conditions are met. See “Auto Drop” for more details.

FQ Error types and their definitions are illustrated in Figure A-36.

Lock Address Violation Requestor was asked to access a node within a locked sequence which
' is different than the node which opened that sequence. (Only detected
if configured to do $0.)
- Maintain Present Requestor was asked to MAINTAIN a remote lock when it was never

OPENed. (Only detected if configured to do so.)

Maintain Absent Requestor was not asked to MAINTAIN, BYPASS or OPEN a lock

that was not yet explicitly released with FREE-LOCK. (Only detected
if configured to do so.)

Figure A-36. FQ error definitions.

A.5.1.1.12.2 Switch Errors

Switch Errors are caused by a variety of conditions that are detected by the logic which

~ monitors the progress of the Switch message as it enters and returns from the Switch

interface. Unlike FQ Errors, Switch Errors are detected once the Switch transaction is
already underway. They are reported to the T-Bus Master only when the transaction is
“finished”, either normally or due to some timeout. Therefore, Switch Errors can only
have a special effect on Frame during a locked sequence. In this case, the Requestor
MAY immediately tear-down the lock if certain conditions are met. See “Auto Drop”
for more details.

Switch Error types and their definitions are illustrated in Figure A-37.

Wait_TO

1dle_TO

Rej_Abort

Rej_TO

" Reverse

Draft: 8/20/88

The Switch Transmit Connection Timer overflowed while the Reques-
tor was waiting for a Function Response. (See: “Connection Timer™)

The Switch Transmit Connection Timer overflowed while the Reques-
tor was in its idle state. (See: “Connection Timer"”)

The Switch Transmit Reject Timer was forced into overflow by the
REJ ABORT input pin. (See: “Reject Timer”)

The Switch Transmit Reject Timer overﬂowed while the Requestor was
attempting to open a connection. (See: “Reject Abort”)

The Requestor detected an incorrect polarity of the Reverse signal dur-
ing a Function Response. (See: “Reverse Profile Monitoring™)}

BBN AC! Proprietary . : . 333

A: SiGA Specification ‘ Butterfly Il Hardware Archirecture

Check

'The Requestor detected an incorrect Checksum dunng a Functlon Re-
sponse. (See: *“Checksum Support™)

Figure A-37. Switch error defi initions.

A.5.1.1.12.3 Remote Errors

A.5.1.1.13

Remote Errors include: 1) errors which are detected within the Server logic itself, and
2) errors generated as T-Bus errors responses by a downstream T-Bus slave device.
Both types errors are simply passed-through “as is” to the upstream Requestor. This
Requestor simply “hands” them - without differentiation - to the initiating T-Bus
Master. Remote Errors, unlike FQ and Switch Errors, can NEVER cause the Reques-
tor to “drop” a lock.

For a summary of the “Server-sourced” Remote errors, see: “Server/Operation/Error
Reporting”.

Disabled Operation

The Requestor can be disabled via a number of bits in the Requestor_ConfigB register.

These include: Ena REQ BIU, Ena REQ STU, Ena REQ SRU, and
Ena_REQ_CNT. These bits reset the four major blocks of the Requestor.

A5.11.14

334

In normal operatlon these bits SHOULD ALWAYS BE ASSERTED/NEGATED AT
- THE SAME TIME. Otherwise, erratic Requestor operation may resulit.

When these bits are disabled (=0), the Requestor T-Bus interface will respond “RE-

- FUSED” to any T-Bus master that tries to access it. The Requestor will also ignore

any assertions of REVERSE from the Switch interface. -

Configuration Registers

The Requestor has two general Configuration Registers. They are: Requestor_Confi-
gA and Requestor_ConfigB. In general, both Configuration Registers are used to set
miscellaneous parameters and enable/disable certain functions. Figure A-38 shows
the structure of Requestor_ConfigA.

BBN ACI Proprietary Draft; 9/20/86 '

’ £ Y
_ L) _

Butterfly Il Hardware Architecture _ - A: SIGA Specification

Register: Hequestor_ConfigaA<31..0>

BIT/FIELD FUNCTION (read/write)

<31..20> REQ_Slave_Num([3]
<28> Modulo_8
<27> Columns_2-
<26> Ena_Auto Drop
<25..23> FQ_Anticipation(3]
<22,.19> STU_Synch(4]
<18..15> BIU Synch(4]
<14, .11> Error_Prefix[4]
<10..9> - Sixty_Five_Delay[2]
<8..6> CBU_Slave_Number[3]
<5..1> FReal Time_Prescale[5]
<0> Columns_1 :

Figure A-38. Register definition - Requestor_ConfigA.

The bit definition of Requestor_ConfigA is shown in Figure A~39. This register con-
tains mostly configuration bits that affect the run-time parameters of the Requestor.
All bits are “high-true” and are reset (low) upon system reset. The structure of Re-
questor_ConfigB is shown in Figure A-40. The bit definition of Requestor_ConfigB is
shown in Figure A-41. This register contains mostly configuration bits that enable/
disable different functions and error reports of the Requestor. Allbits are “high-true”
and are reset (low) upon system reset.

REQ_SIave__NumB] ~ Configures the T-Bus slave number that the Requestor will respond
with (on the T_SOURCE <2..0> pins) when making a Function Re-
sponse. '

Medulo_8 Configures the Requestor to expect either a modulo-8 element (=1)or
a modulo-16 (=0) Switch element.

Columns_2 Configures the Requestor to expect either a 2-column (=0)or a 3-col- -
umn Switch. -

Ena_Auto_Drop Enables the Requestor to tear-down a connection when a Func-

tion_Request or Switch class of error is detected (=1). Otherwise, .
these types of error will only be reported by the Requestor and no spe-
cial action will be taken (=0).

FQ_Anticipation[3} Configures the Requestor for the desired Function Request Anticipa-
: : tion. (See: “Anticipation Support”)

'STU_Synci4] - Configures the settling time of the Switch Transmit Unit’s (STU) hand- |

shake synchronizer which receives an “execute” signal from the Bus
Interface Unit (BIU). This signal is used to initiate a Function Request
on the Switch, (See: “Synchronization”)

Draft: 9/20/88 BBN ACI Proprietary - 335

A: SIGA Specification
BIU_Sync[d]'
Error_Prefix[4]
Sixty_Five_Delay{2]

CSU_Slave_Number[3]

Real_Time_Prescale[5]

Butterfly It Hardware Archirecture

Configures the settling time of the Bus Interface Unit’s (BIU) hand-
shake synchronizer which receives a “completed” signal from the
switch transmit unit (STU). This signal is used to indicate that a func-
tion response has been received by the SRU. (See: “Synchronization™)

Configures the Prefix (T-Bus bits: D7-D4) of the Error code response
for Requestor errors. (See: “Error Handling™)

Configures the pipeline delay of M_SIXTY_ FIVE pulse. Millisecond
pulse as seen by the Requestor. WARNING: DO NOT USE THE “08”
SETTING. (See: “Real Time Clock” for further details)

Configures the Slave number that the CSU will respond with (on the.

T_SOURCE <2.0> pins) when making a Function Response.

Configures the terminal count of the Real Time Prescaler. (See: “Real
Time Clock” for further details)

Configures the SIGA fora l—éolumnrswitch. (See: “Real Time Clock”

Columns_1 |
. for further details)
. Figure A-39. Bit definition - Requestor_ConfigA.
336 BBN ACI Proprietary Draft: 9/20/88

-» . -hﬁ_) -',‘ : -’._.,A ;N -h‘ . s -h-'- ¢ -’.., i

Butterfly Il Hardware Architecture ' A: SIGA Speci ficaiion

Register: Requestdr_ponfigs<31..o>

BIT/FIELD FUNCTION (read/write)

<31..23> Route_address_Mask[9]
<22> Ena_Stolen_Verify_ Err
<21> Ena_Maintain_Absent_Err
<20> Ena_Maintain_Present Err
<19> Ena_Lock_Addr_Err
<18> Ena_Wait_TO Err
<17> Ena_Idle_TO_Err
<16>- Ena_Rej_Abort_Err
<15> Ena_Rej _TO_Err
<14> Ena_Check_Err
<13> Ena_Reverse_Err
<12> Ena_Remote_ Err
. <11> Ena_Quick Drop
<10> Ena_Priority_ Promotion
<9> Ena_Interleaver
<8> Ena_Reject_Abort
_ <7> Ena_Reject_Timer
<6> Ena Conn_Timer
<5> Ena_Switch_Frame
<4> Ena_REQ_BIU
<3> Ena_REQ STU
<2> Ena_REQ_SRU
«1>»> Ena_REQ_CNT
<0> SPARE

Figure A-40. Register definition - Requestor_ConfigB.

Route_Address_Mask[9] ‘Configures the randomization mask for the Bus Interface Unit’s trans-

Draft: 9/20/88

lation of the Logical Route Address to the Physical Route Address.
(See: “Route Address Generation”)

The Enable Error bits allow the indicated errors to be reported(= 1), or to be unre-
ported (=0). With some noted exceptions they DO NOT prevent the errors from oc-
curring. The error functions that these bits enable/disable are described in the “Error
Handling” section. The bits are as follows:

Ena_Stolen_Verify_Err - must ALWAYS be negated (=0)
Ena_Maintain_Absent_Err - enable/disable detection

'Ena_Maintain_Present_Err - enable/disable detection

Ena_Lock_Addr_Err - enable/disable detection
FEna_Wait_TO_Err - enable/disable detection
Fna_Idle TO_Err - enable/disable detection

BBN ACI Proprietary 337

A: SIGA Specification

. Butterfly Il Hardware Archirecture

Ena_Rej_Abort_Err - enable/disable detection and mechanism
Ena_Rej_TO_Err

Ena_Check_Err

Ena_Reverse_Err

Ena_Remote_Err

Ena_Stolen_Verify_Err

Ena_Maintain__Absel‘lt_-Err
Ena_Maintain_Present_Err
Ena_Lock_Adﬂress_Err
Ena_Wait_TO_Err
@a_ldle_TO_Efr |
Ena_Rej_Abort_Err
Ena_Rej_TO_Err

Ena_Check_Err

Ena_Reverse_Err

338

Must ALWAYS be negated (=0). (See: Anticipation Support)

Enables (=1) or disables (=0) the detection of a Maintain Ab-
sent_Error. Disabling this bit allows the Requestor to initiate a Switch
transaction and pass through the incorrect T_LOCKOP < 1..0> field.
(See: “Error Detection and Reporting/FQ Errors™)

Enables (=1) or disables (=0) the detection of a Maintain_Pres-
ent_Error, Disabling this bit allows the Requestor to initiate a Switch
transaction and pass through the incorrect T LOCKOP < 1..0> field.
(See: “Error Detection and Reporting/FQ Errors™)

Enables (=1) or disables (=0) the detection of a Lock_Address_FEz-
ror. Disabling this bit allows the Requestor to initiate a Switch trans-
action with a potentially incorrect Physical Route Address. (See:
“Error Detection and Reporting/FQ Errors™)

Enables (=1) or disables (=0) the detection of a Wait_TO_Error.
Disabling this bit will NOT prevent the Requestor from responding to
a Connection Timer overflow in it normal manner. (See: “Error Detec-
tion and Reporting/Switch Errors”)

- Enables (=1) or disables {=0) the detection of an Idle_TO_Error.

Disabling this bit will NOT prevent the Requestor from responding to

a Connection Timer overflow in it normal manner. (See: “Error Detec- -

tion and Reportmg/watch Errors”)

Enables (=1) or disables {=0) the generation AND detection of an

Idle_TO_Error. Disabling this bit will prevent the Requestor from rec-

ognizing the state of the pin: M_REJ_ABORT. (See: “Error Detection
and Reporting/Switch Errors”)

Enables (= 1) or disables (=0) the detection of a Rej_TO_Frror. Dis-
abling this bit will NOT prevent the Requestor from responding to a
Reject Timer overflow in it normal manner. (See: “Error Detecnon
and Reporting/Switch Errors™)

Enables {(=1) or disables (=0) the detection of a Checksum Error.
(See: “Error Detection and Reporting/Remote Errors™)

Enables (=1) or disables (=0) the detection of a Checksum Error.
(See: “Error Detection and Reporting/Remote Errots™)

BBN ACI Proprietary Draft: 9/20/88

Butterfly It Hardware Architeciure e _ A: SIGA Speciiication

Ena_Remote_Err |

" Ena_Quick_Drop

Ena_Priority_Prometion

Ena_Interleaver

G I CEm Cam

Ena_Reject_Abort
Ena_Reject_Timer

Ena_Conn;Timer

Ena_Switch_Frame

! Ena_REQ_BIU
Ena_REQ_STU
Ena_REQ_SRU -

Ena_REQ_CNT

Columns_1
Draft: 9/20/88

~ Enables (=1) or disables (=0) the detection of a Checksum Error.
(See: “Error Detection and Reporting/Remote Errors™)

Enables (= 1) or disables (=0) the Requestor Switch Transmitter to
negate Frame as early as possible on an Unlocked operation. (See:
“Quick Drop”) '

Enables (=1) or disables (=0) the Priority Promotion mechanism.

- (See: “Priority Promotion”)

Enables (= 1) or disables (=0) the Requestor’s detection of the IN-
TERLEAVED pin. (See: “Interleaver Support”) -

Enables (=1) or disables (=0) the Requestors respondmg to the
REJ_ABORT pin. (See: “Reject Timer”)

Enables (= 1) or disables (=0) the operation of the Reject Timer. This
bit will override the Ena_Reject_Abort bit.

Enables (= 1) or disables (= 0) the operation of the Connection Timer.

Enables (=1) or disables (=0) the assertion of the
REQ_SW_FRAME pin. This function overrides any other function
which effects the assertion of the REQ_SW_FRAME pin.

Enables (=1) or resets (=0) the Requestor Bus Interface Unit.
WARNING: MUST ALWAYS HAVE THE SAME STATE AS:
Ena_REQ_STU, Ena_REQ_SRU, Ena_REQ_CNT. (See: “Disabled
Operation”)

‘Enables (=1) or resets (=0) Requestor Switch Transmit Unit.

WARNING: MUST ALWAYS HAVE THE SAME STATE AS:
Ena_REQ_BIU, Ena_REQ_SRU, Ena_REQ_CNT. (See: “Disabled
Operation”) '

Enables (= 1) or resets (= 0) Requestor Switch Receive Unit. WARN-
ING: MUST ALWAYS HAVE THE SAME STATE AS:
Ena_REQ _BIU, Ena_REQ_STU, Ena_REQ_CNT. (See: “Disabled
Operation”)

Enables (=1) or resets (=0) Requestor Counter (Timer) Module.
WARNING: MUST ALWAYS HAVE THE SAME STATE AS:
Ena_REQ_BIU, Ena_REQ_STU, Ena_REQ_SRU. (See: “Disabled
Operation”)

Configures the Requestor to expect a 1-column Switch (-—J 1). In this -
case, the Requestor still uses Columns_2 to determine the Bid con-
struction. When negated (=0), the Requestor uses Columns_2 for

.BBN ACI Proprietary ' 339

A: SIGA Specification | Butterfly ll Hardware Archiredure

both number of bids to be sent AND bid construction. (See: “Down-
stream Message Components”)

Figure A-41. Bit definition ~ Requestor_ConfigB.

A.5.1.1.15 Test Registers

The Requestor also contains a test register, Requestor_’ 'IéstA This register contains
bits that are related to production testing of the SIGA, and unlike all other configura-
tion registers, a read of Requestor_TestA does not yield the data last written. The write
bits are initialized in their negated state and are related to production testing of the
SIGA. The read bits are used to observe the internal state of the Requestor. They will
yield no useful information during normal operation.

Write bits of Req_TestA SHOULD NEVER BE ASSERTED DURING NORMAL ‘

OPERATION :
e

The write structure of Requestbr_TestA is shown in Figure A-42,

Register: Requestor_TestA<3l..0>

.~ BIT/FIELD FUNCTION (write)

<31> SPARE

<30> TST_CNT_RTP_FORCE_OMSP
<20> SPARE _
<28> TST_CNT_RJT_LOAD_COUNTER

<27> TST_CNT_RJT_DECREMENT COUNTER
<26> TST_CNT_COT_LOAD ENABLE

<25> TST_CNT_RSR_BOC_COUNT_DISABLE
<24> TST_CNT_RSR_MSK_REG_COUNT_ENABLE

<23> TST_CNT_RSR_ADDER_LOAD_ENABLE/RANDOM_CLEAR
<22> TST_CNT_RSR_IDLE DISABLE
<21> TST_TIO_RND
. <20..0> " SPARE{21]
Figure A-42. Register definition - Requestor TestA (wrlte)
The function of the bits in Figure A—42 are listed below:

TST_CNT_FORCE_OMSP This bit affects any the real time préscaler. When asserted, this bit will
cause the One MicroSecond Pulse signal to be forced high continuous-
~ ly. Thiswill cause other portions of the TM to count unusually quickly.

240 - BBN ACI Proprietary ~ Draft: 9/20/88

B O oD e B

D B O ED OET

Gl A Em

Butterily Il Hardware Architecture _ L e A: SIGA Specification

When not asserted, the Real Time Prescaler will generate OMSP nor-
mally every n clock cycles.

TST_CNT, RJT LOAD _ COUNTER

When asserted, this bit will force the continuous loading of the four bit
counter within the reject_timeout counter. The counter will be loaded

~ with the initial value spec1fied in the configuration register. When not

asserted, the counter is loaded normally, at the beginning of every Re-
questor operation.

TST_CNT, RJT DECREMENT _COUNTER

The reject_timeout counter will be decremented on every cycle when
this bit is asserted. When both the decrement and load test bits are
asserted, the load_counter takes precedence. A reject_timeout is is-

sued from the reject_timer the cycle after the count reaches zero. Un-

der normal operation, with this bit - negated, the .counter is
decremented every n microseconds.

TST_CNT_COT_LOAD_ENABLE

This test bit is used to force the eight bit counter within the connec-
tion_timeout unit to load continuously from the configuration regis-
ters. ‘With this bit negated, the counter is loaded at the beginning of
every Requestor bid transmission.

TST_CNT_RSR_BOC_COUNT _DISABLE

When this bit is asserted, the back_off counter within the random re-
start/retry logic is disabled, preventing random timeouts from occur-
ring when the counter reaches its terminal count.

TST_CNT_RSR_MSK_REG_COUNT_ENABLE

This bit is used to force the six bit mask_register_out Johnson counter
to increment on every cycle. This permits the counter to be increm-
ented without starting a Requestor operation. Under normal opera-
tion, this counter is incremented only after n switch rejects have
occurred during an attempted Requestor transmission.

- TST_CNT_RSR_ADDER_LOAD_ENABLE/RANDOM_CLEAR

This bit controls two testing functions, When asserted, this bit will
force the backoff added to load a new value. This permits the adder to
be tested without the normal requirement that the Requestor be issued
a switch reject for each adder load operation. The other function of
this bit is to clear the 12 bit random number generator. This will pre-
vent random numbers from being OR’ed into the backoff counter, sim-
phfymg the testing of the module.

TST_CNT_RSR_IDLE_DISABLE

Draft: 9/20/88

When asserted, thxs bit w111 disable the idle state of the Requestor from
clearing the backoff adder and Johnson counter. With this bit as-
serted, the functions of these counters can be tested without starting a

BBN ACI Proprietary '- 341

A: SIGA Specification -

Requestor operation. When de-asserted, with the Requestor in the
idle state, the backoff adder is cleared, and the Johnson counter will
load the initial state specified in the Requestor configuration registers.

TST_TIO_RND The nine bit random number generator, used in the RQ_BI_TImodule
: ~ to fill the logical route address bits in the Requestor bids, is cleared

whenever this bit is asserted. This simplifies the predictions of Re-

questor bids in testing since random numbers are no longer inserted.

The read structure of Requestor_TestA is shown in Flgure A43.

Butterfly Il Hardware Archirecture

Register: Requestor_TestA<3l..0>

BIT/FIELD

FUNCTION (read)

<31>
<30>
<29>
<28>

<27>
<26>
<25>
<24>

<23>
<22>

<21..15> "

<l4>
<13..1>
<0>

Figure A-43. Register definition - Requestor_TestA (read).

_TST_TM_SSR_SLOT_VALID

TST_TM_RSR_PTS_ACTIVE
TST_TM_RSR_RANDOM_TO
TST_TM_RSR_RANDOM_GENERATOR

TST_TM_RSR_CARRY_OUT
TST_TM_COT_CONNECTION TIMEOUT
TST_TM_RJT_REJECT TIMEOUT
TST_TM_RJT DECREMENT

TST_TM_RTP_Q5
TST_SR_REJ_DET
TST_SR_FSM
TST_ST_LOCKED
TST_ST_FSM
TST_ST_RAND_ROUTE.

The function of the bits in Figure A-43 are listed below:

TST_TM_SSR_SLOT_VALID

TST_TM_RSR_PTS_ACTW_E The state of the Priority Time Slot signal is readable from this bit.
. The PTS signal will boost the priority of a bid after a switch reject has

This bit indicates the state of the slotted start/retry module output
SLOT_VALID. This signal may be used by the Requestor to retrans-.
mit a bid after a switch reject has put it into the backoff state.

been issued.

TST_TM_RSR_RANDOM_TQ The Random Timeout from the Random Start/Retry module may
be read, which has the same function as the slot_valid signal, depend-
ing on the message class of the Requestor operation.

342

BBN ACI Propristary

Draft: 9/20/88

L _

Butterfly || Hardware Architeciure . _ _ A: SIGA Speciicauon

TST TM_RSR_RANDOM_GENERATOR
This bit reads the MSB of the 12-bit pseudo random number generator
inside the backoff counter of the random start/retry module.

TST_TM_RSR_CARRY_OUT This bit is asserted when the backoff adder of the random start/
retry module has an overflow, indicating that the Johnson counter will
be incremented on the next backoff occurrence of the current Reques-
tor operation. '

TST_ TM _COT_CONNECTION_TIMEOUT :
The connection timeout mdlcates that the allotted Requestor connec-
tion time has expired. If the Requestor is in the WAIT state, the opera-
tion will be aborted.

TST_TM_RJT_ REJECT TIMEOUT .
The reject timeout indicates that the time permitted for the Requestor
to make a connection has expired. When the Requestor is in the back-
off state, waiting to retransmit, the operation will be aborted.

TST_TM_RJT_DECREMENT This bit indicates when the reject_timeout module 4-bit counter
receives a decrement pulse from the OMSP prescaler.

TST;TM“_KTP_QS The RTP Q5 register may be read with this bit. This is the MSB of the
Real Time Prescaler counter, which generates the OMSP signal.
OMSP occurs on the falling edge of this signal.

TST_SR_REJ_DET This is the internal signal generated by the Requestor receiver indicat-
' ing that a switch reject has been recelved during a Requestor opera-

tion.
TST_SR_FSM _ These seven bits show the current state of the Requestor receiver. The

states, from MSB to LSB are: END, CHECK, BYTE2, BYTE],
W1 Bl, ARMED, and IDLE.

TST_ST_LOCKED ~ This bit is asserted whenever the Requestor transmitter is in a locked
operation. _ ,
TST_ST_FSM These thirteen bits indicate the current state of the Requestor trans-

mitter state machine. The state, from MSB to LSB are: DONE,
TO_IDLE, LOCKED _IDLE, LOCKED_DONE, BACKOFF2,
BACKOFFI WAITT CHECK, DATA, CMD, BID1, HOLD, and
IDLE.

TST_ST_RAND_ROUTE This bit reads the MSB of the 9-bit psuedo random number generator
used in the logical route address of the Requestor bids.

Draft: 9/20/88 BBN ACI Proprietary _ ‘ 343

A: SIGA Specification Buttertiy Il Hardware Archirecture

A5.1.2

- A5.1.2.1

NOTE

344

Switch Message Protocol

The Requestor fully generates and supports the Butterfly Switch protocol. That sup-
“port is described below.

Physical Route Address Generation

The Switch route address from the T-Bus field, T_AD <33..25>, is actually a logical
address. This Logical Route Address, which has two possible sources, undergoes a
transformation to derive the Physical Route Address. Itis the Physical Route Address
which is assembled into the bid symbols of the downstream Switch message. The Log-
ical Route address is used in the calculation of the Header Partial Sum (see the Reques-
tor/Checksum Calculation section). During a given function request, the two possible
sources of Logical Route Address for the Requestor are the T-Bus (T_AD <33.25>)
and the interleaver port (I_MOD<8.0>). The interleaver port is chosen if: (1) the
1 INTERLEAVED pin is asserted on the SIGA during the T-Bus request cycle AND
(2) the Enable_Interleave bit in the Requestor _ConfigB register is asserted.

M T M M e M, T T T T, e Y e T e T, e

It is assumed that both the T-Bus Master making the request and the Interleaver will
force any unused bits in Logical Route Address to “0” as it is presented to the pins of
the SIGA. .

Mo M T e T g T, S, T M i i, M, e, T T T T T M T T ey S e Y "k.."‘lu P, T,

Whichever routing address is actually chosen, that 9-bit quantity undergoes a trans-
formation. It is modified to allow the randomization of a selectable number of the
routing bits. The random bits that potentially replace routing bits are obtained from a
9-bit random number generator, the Random Route Generator, which runs at the T-

‘Bus clock rate. A bit in the route address can be specified as random by settinga

corresponding bit in the Route Address Mask register toa “1”. The transformation for
the Physical Route Address generatlon can be expressed by an equation as shown in
Figure A-44.

BBN ACI Proprietary ‘ .Draft: 9/20/88

Butterfly Il Hardware Architecture . o A: S8IGA Specification

temp<8,,0> = MOD & INT & INT_EN
[T_SNN & (!INT # !INT_EN)]

PRA<8..0> = (RAND & RAM) # (temp & !RAM)

.. .where,

T_SNN = T_AD<33..25>

MOD = I_MOD<8..0>

INT = T_INTERLEAVED

INT_ EN = Req_ConfigB.Ena_Interleaver
RAND = RAND<8..0>, random # generator
RAM = Route_aAddress_Mask<8..0>

PRA = Physical Route Address

Figure A-44. Equation - Physical Route Address generation.

A5.1.2.2

A5.1.2.2.1

Draft: 8/20/88

The first equation in Figure A-44 represents the selection of either the Interleaver port
or the T-Bus port for the Logical Route Address. The second equation randomizes
selected bits in the Logical Route Address. The Route Address Mask is located in the
Req_ConfigB configuration register.

Downstream Message Components

Some of the relevant aspects of the downstream Switch message components are now -
discussed. For a more detailed explanation of Switch message definition and protocol,
see the reference documents.

Heade(

The construction of the message‘ header, which contains the bid symbols, varies de-
pending on the modulus of the Switch, which can be either 8 or 16. The SIGA design
will support both options, although the modulo-8 Switch is the most likely to be en-
countered. In addition, the Requestor can support a one, two or three column Switch.
Figure A-45 shows the format of the bid symbols in both modulus configurations. As
seen from Figure A—45, certain bid symbols may never be sent if the Switch is small
enough. Note that a modulo-8 switch is always expected to have at least two switch
columns and a modulo-16 can have as few as one. The random bits mentioned in
Figure A-45 are obtained from a separate random number generator known as the
Random Route Generator.

BBN ACI Proprietary 345

A: SIGA Specification ' - Butterfly || Hardware Archirecture

COL1 COLZ MODS8

0

|
© P1 PO Rd Re Rb Ra (BID 1) (first sent)
0 P1L PO Rd Rc Rb Ra (BID 2) v
0O P1 PO Rd Rc Rb Ra (BID 3) (last sent)

Qo oO—=3

. .where,

P1..PO = pricrity from T-Bus: PRIORITY«1l..0> -
Ra..Rd = Physical Route Address (see below...)-

BID1 BID2 _ BID3
Rd Rec Rb Ra Rd Hc Rb Ra Rd Re Rb Ra

HERERROOOOQO

I
|
I
. |
0 0 | =n2nlnoR8 R7 R6 R5 R4 R3 R2 Rl RO
0 1 | 0 R8 R7 R6 O R5 R4 R3 O R2 R1 RO
1 0 | R7 R6 R5 R4 R3 R2 R1 R0 —wwom————m
1 1 | 0 R5 R4 R3 0 R2 Rl RO —————————
0 0 | n2nl nd R8 —cmmmmmmmem e
0 1 | O R8 R7T RE ————mmmmmmom e
1 0 | R7 R6 RS R4 mmwmioommoe momm
1 1 | O R5 R4 R} oo oo
where,
coLz2 = Requestor_ConfigA.Columns_2
coL1 = Requestor_ConfigA.Columns_1
MODS8 = Requestor_ConfigA.Modulo_8
nl,n2,n3 = random bits ' '

————— e = Bid is NOT transmitted

Figure A-45. Bit definition - downstream message header.

A5.1.22.2 Body

346

The message body, which contains the command, address, data and checksum bytes,
varies based on the type of message being sent downstream. The general format is
shown in Figure A-46. Figure A-46, of course, shows a single word write message.
For multi-word write transfers there would be correspondingly more data bytes. Fora
read message, the difference would be that all data fields would be missing and bit S
would be forced to a zero.

BBN ACI Proprietary Draft: 8/20/88 |

Buttertiy li Hardware Archileciure _ o A: SIGA Specificalion

<possible additional write words>

0
I
RI RO 82 ST SO A24 (first sent)
A21 A20 Al9 Al8 Al7 Al8 |
Al3 Al2 All AlO0 A9 A8
A5 A4 A3 A2 Al AO
D29 D28 D27 D26 D25 D24
D21 D20 D19 D18 D17 Di1s
D13 D12 D1i D10 D9 D8
D5 D4 D3 D2 D1 DO

|
|
|
I
I
|
|
I
!
v

o 5 CS3 €82 (€81 C50 (last sent)

= lock operation from T-Bus: T_LOCKOP<l..0>
= portion of field from T-~Bus: T_RR<«1..0>

Rl RO

0 0 write

0 1 read

1 o} <unused>

1 1 <unused> .

= size information from T-Bus: T_SIZE<2..0>

address information from T-Bus: T AD<24..0>
data information from T-Bus: T AD<3l..0>

= enable forward drivers

F =0 disable forward drivers next clock
F=1 enable forward drivers next clock
Stolen Bit

7
I
L1 Lo
A23 A22
Al5 Al4
A7. A8
D31 D30
D23 D22
D15 Di4
D7 D6
F 0

‘...where,

" L1..LO
R1..RO
52. .80
A24. A0
D31..D0
F
s
£S3..CS0 =

message checksum

Figure A-46. Bit definition - downstream message body (write).

NOTE

A.5.1.2.3

Draft: 9/20/88

m\\‘u‘\.“\\%‘\..\\:\‘u\\\\ \.\\.\\\KK\\\\\\\\‘M.RM\KM\\“\R\R\“\,N-

The current SIGA design ALWAYS forces the “F” bit to be a “q,

N N e i R T R M M e R R T R O R RO O R N

Checksum Support

The Requestor and Server each have two separate units of checksum logic. The first,
known as the Transmit Checksum Unit, calculates the message checksum during its

BBN ACI Proprietary . _ 347

A: SIGA Specification Butterfiy |l HardWare Archirecture

A5.1.2.4

A.5.1.2.4.1

transmission. The second, known as the Receive Checksum Unit, calculates and veri-
fies the checksum for the incoming message.

The elements included in the calculation of the checksum of a downstream message
vary depending on the type of message being transmitted. For any initial message
(locked or unlocked), the Requestor always initializes its Transmit Checksum Unit
with the “flash” sum of the Logical Route Address. The Logical Route Address can, of
course, come from either the MOD pins (interleaved access) or from the T-Bus (non-
interleaved). For any locked messages, the Requestor always initializes its Transmit
Checksum Unit to zero.

In the same way, the downstream Server must initialize its Receive Checksum Unit to
ITS node checksum whenever it expects an initial message. This initialization value
will, of course, match that calculated by 2 Requestor about to transmit to that Server’s
node. For locked messages, the Server will initialize its Receive Checksum Unit to
zero, just as the Requestor does with its Transmit Checksum Unit.

In an upstream message, there are NEVER any routing bits to contend with. There-
fore, the downstream Server always initializes its Transmit Checksum Unit to zero, as
does the Requestor’s Receive Checksum Unit.

Checksum Calculation

The checksum for a downstream message is actually calculated in two parts. If the
message is an initial (locked or unlocked) one, a partial sum of the message hedder is
calculated (by separate logic) and stored in the Transmit Checksum Unit. Then, the
Transmit Checksum Unit adds (exor’s) the initial value, if any, to the bytes of the body
of the message as it is transmitted.

Header Partial Sum

The header partial sum is derived by considering only the Logical Route Address bits.
This means that the priority and random bits are not included in the calculation. This
approach eases the design of the checksum logic and makes it independent of the
Switch modulus. The equation for this calculation is shown in Figure A-47,

HPS<3> = R8 $ R7 3 R3

HPS<2> = R6 $ R2

HPS<1> = R5 $ Rl

HPS<0> = R4 $ RO

. ..where,

HPS<3..0> = Header Partial Sum
R8..RO = Logical Route Address -

Figure A-47. Equation - Requestor header partial sum calculation.

348

BBN ACI Proprietary " Draft: 9/20/88

LY

L

MEE O OEE N 2 O 3N

Butierly || Hardware Architecture L | A: SIGA Specification

A5.1.24.2

CS<3>
Cs<2>
Cs<1>

CS5<0>

Message Checksum

As previously mentioned, the header partial sum is added (exor’ed) to the body of a
downstream message if and only if that message is an initial message. The message
checksum calculation is shown in Figure A-48. Figure A-48 shows the calculation for
a single word write message. For write messages with more words, those bytes would
be included in the same manner as the data bytes in the figure. For read messages, the
data field would be missing entirely from the calculation.

HPS<3> $ exor(Ll1l,52,A23,A19,A15,A11,A7,A3,
D31,D27,D23,D19,D15,D11,D7,D3, F)

HPS<2> $ exor(LO,S51,A22,A18,A14,A10,A6, A2,
D30,D26,D22,D18,D14,D10,D6,D2,0)

HPS<1> & exor{(Rl,50,A21,A17,A13,A8,A5,A1,
D29,D25,D21,D17,D13,D9,D5,D1,0)

HPS<0> $ exor(RO,A24,A20,A18,A12,A8,A4,A0
D28,D24,D20,D16,D12,D8,D4,D0,8) .

. .where,

exor‘ed components from: "Bit Definition - Message Body"
CS<3..0> = message checksum
HPS<3..0> = Header Partial Sum

NOTE

A.5.1.25

Draft: 8/20/88

Figure A-48. Equation - message checksum (see text).

g, M, N e N M, e, S e M T T T e T e, e M e T

The “F” field is always “0”.

M M R N e T R R N M T T T T T T M M e T e T, B e T e

T-Bus Interface

The Requestor supports the standard T-Bus protocol with some small limitations. For
one, the Requestor does NOT support unaligned transfers which fall across word
(32-bit) boundaries. In addition, when it is locked to a T-Bus Master and in its
“WAIT” state, the Requestor will always issue a REFUSED LOCKED to ANY T-Bus
query while it is busy processing a split-cycle request. This means that it will even
REFUSED LOCKED to its own T-Bus master! This is a hardware optimization
‘which should cause no problems. The locking T-Bus master normally has no reason to
query the Requestor until the Requestor finishes its current operation.

Figure A-49 shows the Requestor’s state~-dependent T-Bus responses while it is in
some of its more interesting states.

. BBN ACI Proprietary - ' 349

A: SIGA Specification | Butterfly Il Hardware Archirecture

NEXT RESPONSE CONDITION

State = IDLE (satisfied a function request, waiting for new one):
PROMISE !LOCKED & !DROP_LOCK & read

PROMISE !LOCKED & !DROP_LOCK & write & !multi

MORE 'LOCKED & !DROP_LOCK & write & multi

REFUSED ILOCKED & DROP_LOCK '

REFUSED LOCKED LOCKED & !'DROP_LOCK & !my_master

PROMISE LOCKED & !DROP_LOCK & my_master & read

PROMISE LOCKED & !DROP_LOCK & my_master & write & !'multi
MORE LOCKED & !DROP_LOCK & my_master & write & multi
REFUSED LOCKED & DROP_LOCK :

State = WAIT (waiting for function request to traverse Switch)

 State = BREQ (making T-Bus request for T-Bus with split response):

AS5A1

REFUSED
REFUSED

2.6

!LOCKED
LOCKED LOCKED

Figure A-49. Requestor T-Bus responses (partial list).

LCON Interface

The LCON is a the physical and logical link between the SIGA-Requestor and the
“input” port of the Switch Gate Array (SGA). In other words, for the SIGA, the LCON
interface is the logical Switch interface. The LCON provides the Requestor with: 1)
level conversion to and from the ECL levels of the SGA and 2) reclocking of data,
Frame, Reverse and the 65 ms pulse to and from the SGA.

Figure A-50 shows the Requestor’s LCON (Switch) Interface Pins.

PIN NAME TYPE FUNCTION

R_DATA<T..0> bidirectional Requestor-LCON data bus

R_FRAME output Frame cutput to Switch
R_REVERSE input Reverse input from Switch
R_NENA_BACK output LCON TTL driver enable

M_SIXTY FIVE input 65 ms timer input

Figure A-50. Requestor LCON (Switch) interface pins.

A.5.1.2.6.1 Data Bus Enable Control

350

The Requestor controls the enables of both its own output drivers and the LCON’s
output drivers to the SIGA-LCON data interface - R_DATA < 7..0>. To control its
own output drivers, the Requestor generates an internal signal called, nena_out. When
asserted (=0), nena_out enables the Requestor’s R_DATA < 7..0> drivers. To control

BBN AC! Proprietary Draft: 9/20/88

B N

N N .

Butierfly Il Hardware Architéclure . - . A: SIGA Specificatia; '

Draft: 9/20/88

the LCON, the Requestor provides the R_NENA_BACK signal to directly en-
able(= 0)/disable(=1) the LCON's output drivers to R_DATA <7..0>. In addition,
R_NENA_BACK, after a flip-flop delay, is used to enable/disable the LCON’s Switch
data ECL interface bus. When the Requestor is driving R_DATA <7.0>, it is in
“Talk” Mode. When the LCON is driving that bus, the Requestor is in “Listen” Mode.

There are two major reasons why the Requestor separately provides the
R_NENA_BACK signal. First, the Requestor already “knows” which direction the
bus should be driving, and therefore this logic need not be repeated in the LCON.
Second, this configuration gives the Requestor the ability to prevent bus contention.

Bus contention can occur when the direction of data changes on the LCON interface.
IfR_NENA_BACK changed on the same clock edge as nena_out, there would be con-
tention on R_DATA <7..0> each time both of those signals changed. However, be-

- cause of timing skew and minimum delays, contention is actually only a problem when

the Requestor tries to enable its own drivers as it disables the LCON’s backward driv-
ers, This occurs during the transition from Listen to Talk Mode. But since the Reques-

tor has separate control of its own output drivers and the LCON’s, it can prevent this
case of contention. It does this by inserting a “dead” state for one Switch Interval
where neither the Requestor nor the LCON is driving R_DATA <7..0>.

The Requestor is considered “quiescent” when it is not transmitting messages and not
waiting for any replies. When quiescent, the Requestor is in Talk Mode. The Reques-
tor tries to stay in Talk Mode whenever possible, making the transition to Listen only
for the absolute minimum time necessary. This situation is the mirror image to the
Server. Itis always in Listen Mode when qmescent and tries to stay in Talk Mode for as
little time as possible.

When the Requestor finishes transmitting the checksum of an Initial or Locked mes-
sage, it transitions directly into Listen Mode. Once there, it waits for either a Reject
(which could have been detected and latched during the message transmission) or a
return message. When either of those two events are complete, the Requestor transi-

‘tions back to the Talk Mode, via the dead state. Figure A-51 shows this sequence for

both a replied and a rejected Switch message. Note from Figure A-51 that there is a
dead state only when making a transition from Listen to Taik Mode. Although not
shown in the figure, subsequent Locked messages act in the exact same manner.

BBN AC! Proprietary 351

A: SIGA Specification

Transmit Mode
Frame

Reverse
R_DATA<7..0>
nena_out
R_NENA_BACK

Transmit Mode
Frame
Reverse

R_DATA<T..0>

nena_out
R_ENA_BACK

...where,

|l e o B

ttttttttttetlllll ...

HHHHHH_XXXxXX

XXXXXMIMMMMCXXXXX . .
HHHHH ...
HHHHHHHHEHHHH RPN

‘s HHHHH
. XXXNMMMMCXXXXXXXKXKXXXX

Butterfly H Hardware Archirecture

11111111111dttetttttt

HHHHHHHHHHHH
HHHHHHHHHH

(a) Message Returned, No Reject

ttttttttttttlldttttittt
HHHHHH_XXXXXXXXXXX

H

HHH

XXXXXMMMMIMmMC X-XXXXXXXXX

- HHHHHHHHHHHH__ HHHHHHHHH

(b) Reject Latched during Tx

is a message

is the checksum
is Talk Mode

is Listen Mode

is the dead state
floating bus

Figure A-51. Timing - Requestor switch data bus enable.

The Server is described from the point of view of its overall operation and its two major

interfaces: the T-Bus interface and the Switch Interface.

The operation of the Server is described by discussing its major functions.

The Server is a local T-Bus master which creates a logical coupling to a physically re-
mote T-Bus slave via the Switch. The Server acts as the “responder” of this coupling
on the Switch and thus can be thought of as a “master” on the T-Bus but a “slave” to
the Switch. Referring to Figure A-52, the Server contains three major functional units:
Bus Interface Unit (BIU), Switch Tx Unit (STU), and the Switch Rx Unit (SRU). The
BIU is clocked by the T-Bus clock and both the STU and SRU are clocked by the
Switch clock. Interfacing of control signals between these units is accomplished with
handshake synchronizers, as shown. The SRU receives function requests from the

A.5.2 Server
A.5.21 Operation
A5.2.1.1 Overview
352

BBN ACI Proprietary

Draft: 9/20/88

%

Butterfly Il Hardware Architecture = A. SIGA Specification

= w

T O HAHA

" Draft; 9/20/88

Switch and translates those requests into commands for the BIU. The BIU handles all
of the T-Bus transactions of the Server to comply with a given function request. When
a T-Bus slave device responds to a function request, the BIU picks-up that response
and passes it as a command to the STU. The STU then initiates an upstream Switch
message to return the function response.

e + : ot P}
l ! I ot I | P
	switch	<————-	sync}--—-- >			
-—memmen >lRe	At	7				
smm==m===>	Unit	>	Bus		B	
			Interface] Ul			
]	<——+	uUnit [¢=======>	8§			
bt			N			
i I		1				
pommet	i	aE				
I		<——+ I I				
		l				
€mmr———-	switch	<		L]		
D D						
	Unit	<e=---	sync	--—--->	1 B	
I		+ommt				
- + osmm +						
' -

Figure A-52. Server block diagram. |

The SRU detects the downstream message of a function request, verifies the checksum
and alerts the BIU of the incoming message and the checksum status. The SRU also
causes Switch rejects when either the BIU has explicitly commanded this action or
when the SRU decides to on its own. The BIU will command a Switch reject when a
function request is trying to access a T-Bus device which is locked to a T-Bus device
other than the Server. The SRU will NOT initiate a reject without a command from the
BIU and thus CANNOT correctly handle a non sequitur downstream message. A non
sequitur would occur, for instance, when the SRU receives a function request (in the
form of a downstream message) and knows that the STU has not even begun to send an

upstream Switch message in response to the last function request. '

The SRU has the additional responsibility of initiating a FREE-LOCKS command to
the BIU when the Switch path is locked and the incoming Frame signal negates unex-
pectedly. This situation is known as “droppinga lock” and is the ONLY time when the
Server does not create a Function Response as a result of an explicit function request.

The SRU/BIU interface is a streamlined request/response type interface where for
each SRU request there is an BIU response. The SRU presents an encoded function
request to the BIU and sets an “execute” flag. When the BIU is done operating on that
request, it sets a “done” flag and returns a status code and data to the SRU. The SRU
also has the ability to “interrupt” the pending BIU operation. This is accomplished
with a “terminate” handshake signat from the SRU. The “terminate” handshake re-
ceives a “terminate~done” from the BIU when the BIU finishes. This “interrupt” path

BBN AC! Proprietary 353

A: SIGA Specification o Butterfly Il Hardware Archirecture

AS521.2.

A.5.2.1.2.1

354

is used for situations where the BIU may be indcfinitelir “hung” because a failed T-Bus
slave is continuously asserting Slave pause.

- Boththe SRU and BIU are responsible for handling their own functions independently |

and they have very little real-time knowledge of each other’s state. This approach sim-
plifies the Server des:gn and carries the request/response philosophy throughout the
system.

The BIU has three major responsibilities: (1) initiate T~Bus requests to comply with a
command from the SRU; (2) receive responses from the T-Bus; (3) transfer those re-
sponses, along with any error indications, to the STU, To accomplish the T-Bus re-
quest/response transfer, the BIU supports most of the T-Bus protocol.

The STU is a fairly simple device. It acts on a function response ﬁom the BIU and
initiates the upstream Switch message to carry out that response. The STU also is
responsible for assembling and transmitting the data in an outgoing message.

_ Anticipatioh Support

The operation of the Server has two main goals: (1) to pass a downstream Switch func-
tion request to a T-Bus slave as quickly and efficiently as possible, and (2) to return the
corresponding function response from that T-Bus slave as quickly and efficiently as
possible, Certain techniques can be used to take advantage of the expected operation
of the logic in the function request and response path. These techniques are known
collectively as “anticipation”. The use of anticipation in achieving the two main goals
of the Server are now discussed. :

Function Requests

Maximizing downstream function request efficiency in the Server involves balancing
the desire for speed with the desire for eliminating unwanted side-effects. The speed
issue relates to the desire to transfer data from an incoming Switch message to the
T-Bus as soon as it is available. Unwanted side-effects involve taking any action on
the T-Bus that would cause a change in stored data in a T-Bus slave device given that
the downstream message was corrupted. Two extreme approaches could be taken in
the design of the Server. First, the Server could wait until the entire downstream mes-
sage had been received, including the checksum; verify the checksum; and then begin
access to the T-Bus. Second, the Server could begin access to the T-Bus immediately
upon receiving a downstream message. :

- The first approach would cause the Server to waste valuable time in accessing the T-

Bus, and the second could possibly cause unwanted side effects. Since one of the de-

- sign goals of the Butterfly IT is that data integrity should take precedence over speed, a
‘compromise between the first and second approaches is implemented in the Server,

The Server “anticipates” the verification of the downstream checksum and begins it’s

. request for T-Bus drivership. The timing is set up such that the Server BIU is com-

manded by the SRU to make a bus request at a specific moment in time. In fact, the

BBN ACI Proprietary Draft: 9/20/88

S am Sm o SN S

Butterfly il Hardware Architecture . . A: BIGA Specif;catiah'_

Ab5.2122

SRU commands the BIU {(input to the BIU synchronizer) to begin the T-Bus request
EXACTLY five Switch intervals before the “Checksum_is_OK" signal is valid. This is
true for both reads and writes. Therefore, the synchronizer setting, Server_Confi-
gA.BIU_Xfer Sync<3.0> should be set accordingly. See “Synchronizer Settings”
for more details. - :

Function Responses

The Server uses a similar technique as the Requestor for anticipating T-Bus transac-
tions. Of course, in the case of the Server, the anticipation is for Function Responses
rather than Function Requests. The Server_ConfigA.Multi_Head_Start <1..0> reg-
ister is used to set the anticipation for multi-word writes. Figure A-53 illustrates its
settings. -

Register: Server_ConfigA.Multi_Head_Start<l. 0>

10 Wait until...

00 all words are transferred
01 three words have been transferred
10 two words have been transferred

11 one word has been transferred

- Figure A-53. Register definition -
Server_ConfigA.Multi_Head_Start<1..0>.

In addition, the Server_ConﬁgA._Ena_-Byte_Head_Start'bit, when asserted (=1), be-
gins anticipation whenever the T-Bus Slave responds with EARLY-ACK.

Normally, the Server will anticipate for reads only. However, in some hardware config-
urations it is possible to anticipate on writes. When Server_Con-
figB.Ena_Wr_Head_Start is asserted (= 1), the Server treats writes exactly the same
way as reads for all purposes. : ' '

Usihg anticipation in multi-word writes can cause unusual side—effects if the multi-
word write does not complete in time. This is because the Server SRU may mistakenly

_ believe that the write data buffers are actually stable until the upstream Requestor has

Draft: 9/20/88

seen the Function Response and taken some action. As seen by the Server, this re-
sponse takes quite long, at least 4-6 Switch Intervals. Thus, if the n_mlti—word write
takes only this long to complete, there is no problem.

BBN ACI| Proprietary 355

A: SIGA Specification Butterfly Il Hardware Archirecture

VMARh"NGi--------------------.--

- NOTE

A.5.2.1.3

A5.2.1.4

356

Using read anticipation requires that the T-Bus Slave issue an ERROR before tran-
sferring any data. :

.-----.-----_-_--.-.----.-----

T T T T T T R T R TR, T R T TR

The EARLY-ACK response has no meaning for multi-word reads or writes, and this
response is ignored by the Server. Also, the Server must examine the T_RR field even
though T_SPAUSE may be asserted. '

P e T T T T T T N R NN R T T T N N T T

Locked Sequences

The Server’s handling of locked sequences parallels that of the Requestor and is de-
scribed in the “Requestor/Operation/Locked Sequences” section. Like the Requestor,
the Server’s locked sequence has three distinct events: opening, maintaining and drop-
ping. | - -

The Server becomes locked if and only if it receives an Initial Locked message (OPEN,
by definition is the command). It remains locked as long as it returns any function

- Tesponse except Reject. When a lock is dropped at the upstream Requestor, Frame is

negated. As mentioned in the “Requestor/Operation/Locked Sequences” section, a
Requestor drop-lock function request can occur as the result of a T-Bus master issu-

-ing a FREE-LOCK or possibly a Requestor Switch Class error. The Server NEVER

knows the reason for the drop-lock request, it simply issues the perfunctory FREE-
LOCK to a T-Bus slave. '

Stolen Bit Support

- Because of the structure of the Switch message format, only one bit of Stolen informa-

tion can be transferred between upstream and downstream nodes during a given mes-
sage.. Therefore, during byte reads, the Stolen bit from the Server’s T-Bus is
transported to the upstream Requestor exactly as it is read from T_AD < 32> during
the data transfer cycle of the T-Bus. For multi-word reads, the Server continues the
‘T-Bus transaction, reading and storing all of the intended words even when it encoun-
ters a Stolen bit BEFORE the last word of the transfer. :

However, when the Server finally transmits that data to the upstream Requestor, it acts
differently depending on whether or not the data contains a Stolen bit. Ifit does not, all
of the multi-word data is included in the upstream message and the Stolen bit in the
Checksum byte is sent negated. If it does, the Server ends transmission of the data
AFTER it sends the Stolen word, and it asserts the Stolen bit in the Checksum byte.

BBN AC! Proprietary Draft: 9/20/88

EL ED ED T

o D D o ED

Butterfly | Hardware Architeciure o A: SiGA specification

The upstream Requestor always assumes that the words of a multi-word transfer are
NOT Stolen until it encounters an asserted Stolen bit in the Checksum byte. When this
occurs, the LAST word and only the last word received by the Requestor is assumed to
be Stolen.

" For byte write transfers, the Server presents the state of the Stolen bit in the down-

stream Checksum byte to the downstream T-Bus bit, T_AD <32>. For multi-word
writes however, the state of ALL Stolen bits transported downstream is assumed by

the Server to be “0”. In this case, the Server wﬂl ignore the state of the Stolen bit in the

downstream Checksum byte.

A.5.2.1.5 Error Reporting
Errors delivered by the Server (Requestor “Remote Error” Class) are transported by
the Server to the upstream Requestor via the function response Switch message. Those
errors may have one of two sources: they could originate from the Server itself, or they
could be errors passed to the Server from a downstream Slave. The error codes due to
the Server are shown in Figure A-54. Their definitions are shown in Figure A-55.
Other remote slave errors are described in other system documents.
Server Error Codes:
7 .0
I |
PPPPPPba
- b a Server Error’
.0 0 Downstream_Refused
0 1 Downstream Write
1 0 Downstream Late
11 Downstream_ OTL
. .where,
P..P = Server_ConfigK;ErrormPrefix<5..0>
Figure A-54. Server remote error codes and definitions.
Downstream_Write A downstream write error was detected from a T-Bus Slave while the
' downstream Server was sourcing data. Because of the direction of the
data bus, the Server cannot return the actual error code.
Downstream_OTL A downstream T-Bus Slave did not respond to the Server’s request.
. Specifically, the Slave did not assert T_DRIVEN in the T—Bus cycle
following the Server’s T-Bus request.
Downstream_Late A downstream T-Bus slave responded with a LATE ERROR.
Draft: 9/20/88 BBN ACI Proprietary - : : 357

A: SIGA Specification Butterfly Il Hardware Archirecture

Downstream_Refused A downstream T-Bus slave responded with REFUSED-LOCKED
when the Server thought itself to be locked. -

Figure A-55. Server remote error definitions.

-A5.21.6 Disabled Operation

The Server can be disabled via a number of bits in the Server_ConfigB register. These
include: Ena_BIU and Ena_SRU. These bits reset the two major blocks of the Server.

In normal operation, these bits SHOULD ALWAYS BE ASSERTED/NEGATED AT
THE SAME TIME. Otherwise, erratic Server operation may result.

A5.21.7 Configuration Registers

The Server has two general Configuration Registers, known as Server_ConfigA and
Server_ConfigB, which are used to set miscellaneous parameters and enable/disable
certain functions. The structure of Server_ConfigA is shown in Figure A-56. The bit
definition of Server_ConfigA is shown in Figure A-57. This register contains mostly
configuration bits that affect the run~time parameters of the Server. All bits are
“high-true” and are reset (low) upon system reset. The structure of Server_ConfigB is
shown in Figure A-58. The bit definition of Server_ConfigB is shown in Figure A-59,
This register contains mostly configuration bits that affect the run~time parameters of
the Server. All bits are “high-true” and are reset (low) upon system reset.

Register: Server_ConfighA<3l..0>

- BIT/FIELD FUNCTION (read/write)

<31> Ena_Wr_Head_Start
<30> Ena_Byte_Head Start
<28,.28> Multi_Head_Start[2]
<27..24> RX_Init_CS{4]
<23..18> Error_Prefix[6]
<17> Ena_BIU
<16> Ena_SRU
<15..12> STU Freed_Sync[4]
<11..8> STU_Done_Sync{4]
<7..4> BIU_Free_Sync[4]}
<3..0> BIU_Xfer_ Sync[4]

Figure A-56. Register definition - Server_ConfigA.

258 BBN AC! Proprietary : Draft: 9/20/88

L

= BT e R

.

Butterfly Il Hardware Architecture - - A: SIGA Specification

Ena_Wr_Head_Start
Ena_Byte_Head_Start

Multi_Head_Start[2]

RX_Init_CS[4]

Error_Prefix[6]
Ena_BIU
Ena_SRU

STU_Freed_Sync{4]

STU_Done_Sync[4]

BIU_Free_Sync[4]

BIU_Xfer_Sync[4]

Enables the Server to anticipate during write-type Function Re-
- sponses (=1). Otherwise, anticipation will only occur for read-type

Function Responses. (See: “Anticipation Support”)

Enables the Server to anticipate during byte-type Function Responses
(=1). Otherwise, anticipation will not occur for byte-type Function
Responses (=0). (See: “Anticipation Support”) '

Confi gufes the Server for the desired Function Response Anticipation
for all multi-word operations. (See: “Anticipation Support”)

Configures the initial checksum for Initial Messages. NOTE: This reg-
ister must contain the logical INVERSE of the initial checksum. (See:
“Checksum Calculation”)

" Configures the Prefix (T-Bus bits: D7-D2) of the Error code response

for Server error. (See: “Error Handling”)

Enables the by releasing its reset signal (= 1). Otherwise, the BIU will
be held in reset (=0). (See: “Disabled Operation™)

Enables the SRU by releasing its reset signal (=1). Otherwise, the
SRU will be held in reset (=0). (See: “Disabled Operation”)

Configures the settling time of the Switch Transmit Unit’s (STU) hand-
shake synchronizer which receives a “freed” signal from the Bus Inter-
face Unit (BIU). This signal indicates that the BIU has acted on a
previous “free” command from the SRU. (See: “Synchronization”)

Configures the settling time of the Switch Transmit Unit’s (§TU) hand-
shake synchronizer which receives a “done” signal from the Bus Inter-
face Unit (BIU). This is used to indicate complietion of a Function
Request. (See: “Synchronization™)

Configures the settling time of the Bus Interface Unit’s (BIU) hand-
shake synchronizer which receives a “free” signal from the Switch Re-
ceive Unit (SRU). This is used to issue a FREE-LOCK. (See:
“Synchronization”) '

Configures the settling time of the Bus Interface Unit’s (BIU) hand-
shake synchronizer which receives a “xfer” from the Switch Receive

" Unit (SRU). This is used to initiate a Function Request. (See: “Syn-

chronization™) ,

Figure A-57. Bit definition - Server_ConfigA.

Draft: 9/20/88

BBN ACI Proprietary o 359

A: SIGA Specification

Register:

Butterfly Il Hardware Archirecture -

Server ConfigB<3l..0>

BIT/FIELD FUNCTION {read/write)
<31..8> not used

<7..6> Spare

<5> Dis_Frame
<4>" Ena_SOC
<3> Dis_Check Err

<2..0> SER_Slave Num[3]

Figure A-58. Register definition - Se'rver_Conf'igB.

Dis_Frame
Ena_SOC

Dis_Check_Err

SER_Slave_Num[3]

Disables the SRU by forcing it to see the incoming Frame negated, re-
gardless of its actual state (= 1). Otherwise, the SRU will see the actual
incoming Frame (=0). (See: “Disabled Operation™)

Enables the SRU to recognize the start of a new connection (= 1) :
'Otherwise, the SRU will ignore this event (0). (See: “Disabled Oper-

ation™)

Disables the detection ofcheéksum_ errors (= 1). Otherwise, the detec-
tion is enabled (=0). (See: “Checksum Calculation)

Configures the Slave number that the Server will place on the

T_SOURCE <2..0> pins when it is making a T-Bus Function Re-
quest.

Figure A-59. Bit definition - Server_ConfigB.

A.5.2.1.8 Test Registers

The Server contains a read-only test register which should NEVER be accessed during -

normal operation. Figure A-60 shows the structure of that register which is used
mostly for observing internal states. Figure A-61 shows the bit definition of SOME of
the bits in the Server_TestA register.

360

BBN ACI Proprietary ' Draft; 9/20/88

Butlerfly | Hardware Archileciure Al DIUA speciiCatiurli

Register:'Server_TestA<31..0>

BIT/FIELD FUNCTION (read-only)

<31> <unused> .
<30> SRU believes it is locked
<20> SRU refusing new connections
<28> Synchronized "Enable New soc” s"
<27T> SRU *"Should be Checksum"
<26> SRU Checksum OK signal
<25> SRU Anticipation Signal
<24> Checksum errors occurred
<23..20> <unused>
<19..16> Running Version of Rx Checksum

15..8> Internal State of SRU.FSM
<15> SRU has seen Reverse come and go
and has seen Frame go away.
Transition to 9, 10, or 13 w111 occur
<14> SRU has seen first Reverse and is waiting
for the end of the Reverse transmission
<13> SRU is waiting for lock to be FREE-LOCKed

<12> SRU is waiting for first Reverse
<1ll> SRU receiving Checksum byte

<10> =~ SRU receiving a command

<9 SRU is idle

<8> Bad S0C seen (low true)

Figure A-60. Register definition — Server_TestA.

SRU believes it is locked The BIU will issue a FREE-LOCKS request if Frame is negated for
more than one Switch Interval.

SRU refusing new connections Indicates that there is no active connection and that new connec-
tions will be refused (with Reject). The SRU IS currently and WILL be
idle until re-enabled. (See: “Disabled Operation”)

Synchronized Enable New SOC’s
The synchronized version of Server ConﬁgB 4. The programmer
should check this bit before assuming that the SRU will Reject or ac-
" cept new connections. (See: “Disabled Operation”)

SRU “Should be Checksum” Indicates that the Checksum should have arrived. This is used in
conjunction with the “SRU Anticipation Signal” to determine if the
SRU is properly anticipating the reception of the Checksum byte.

SRU “Checksum OK” Indicates to the BIU that the T-Bus operation should, in fact, take
place. ' _
Draft: 9/20/88 : BBN ACI Proprietary . 361

A: SIGA Specification _ Butterfly il Hardware Archirecture -

SRU Anticipation Signal Indicates to the BIU that it should begin the T-Bus request See SRU
“Should be Checksum” above.

- Checksum errors occurred Indicates that a checksum error did occur sometime in the past. This
bit is negated whenever Server_ConfigB.4 is negated.

Figure A-61. Bit definition - Server_TestA.

|
1

==

A.5.2.2 S\mtch Message Protocol

-%-Lwi

The Server fully generates and supports the Butterfly Switch protocol That support is
described below.

A.5.2.2.1 Upstream Message Components

Unlike the Requestor, the Server never has to create a message header with routing
information because the return path to the upstream Requestor has already been es-
tablished. The Server need only return a checksum with data and/or error code infor-

mation. - Figure A-62 shows a typical upstream Server message as a response to a
word-read function request. The signiﬁcance of the “E” and “S” bits are described in:

“Stolen and Error Messages”. The upstream message body for a write is always of the

same format whether the function request was multi-word or non-multi word.

Figure A-63 shows a typical upstream Server message as a response to a word write
Function Request. The significance of the “E” and “S” bits are described in: “Stolen .,
and Error Messages”.

7 o

| | | |

D31 D30 D29 D28 D27 D268 D25 D24 (first sent)
D23 D22 D21 D20 D19 ‘D18 D17 D16 - 1

D15 D14 D13 D12 D11 D10 D9 D8

D7 D6 D5 D4 D3 D2 DL DO

E
v
J

l

|

- | |
<possible additional read words> f
v

© ©0 E S5 ©S3 CS2 CS1L CSO (last sent)

[} omtat | adons]

. .where,
D31..D8 = data information from T-Bus: T AD<31..8> ,
p7..DO = error code (E=1), T AD<7 0> (E—O)
E = Error bit - I
s = Stolen bit
CS3..CS0 = message checksum

Figure A-62. Bit definition - upstream message body (read).

362 _ _ BBN ACI Proprietary Draft: 8/20/88

- =

-

i

—

—

Butterfly Il Hardware Architeciure A. SIGA Specification

7 - 0

| | _

D7 D6 D5 D4 D3 D2 Dl DO (first sent)
0 . 1) E S CS3 (€S2 CS1 CSO (last sent)

. ..where,

D7..D0 = error code (E=1), unknown .(E=0)

E = Error bit : -
€S3..C50 = message checksum

Figure A-63. Bit definition - upstream message body (write).

AS5.22.2"

Draft: 9/20/88

Stolen and Error Messages

When the Upstream Read message has Stolen and/or Error bits asserted in the check-
sum, their presence modify the meaning of the message byte (or bytes) PRECEDING
the checksum byte. In the case of an asserted (= 1) Stolen bit, the Server is indicating
that ONLY the previous four bytes are stolen. This is consistent with what can happen
on the T-Bus side of the Server. There, a T-Bus Slave may happen to return a Stolen
data word which is not necessarily the last word of the read operation. The Server’s
BIU will continue to read any data “past” the Stolen word, but its STU will always
END transmission of the Upstream Switch Message on the Stolen word - ignoring the
rest. The consequence for the Upstream Requestor is that the “S” bit always modifies
the LAST word received. The “S” bit has no meaning for Upstream write messages
and is ignored. o '

When the Error bit is asserted (= 1) during an Upstream Read message, the Server is
indicating that the byte immediately PRECEDING the Checksum contains the Error
Code and that any other bytes in the message are “garbage” data. The T-Bus protocol
demands that all Slaves respond with “ERROR” during the FIRST word transfer and
that an “ERROR” response ends the T-Bus transfer. Therefore, an Upstream Read
Message with E=1 will only contain one word of data. Assertion of the “E” bit has
higher priority than assertion of the “S” bit, so they will never be asserted simulta-
neously in a given Upstream message.

Figure A-64 shows a summary of the effect of the “E” and “S” bits on an Upstream
Message.

BBN ACI Proprietary - 363

A: SIGA Specification

OOl M
OH Ol W

-4
o]
o+
Lo]

: the value ES =

Butterfly Il Hardware Archirecture

previous byte is..

Data byte, previous word is NOT stolen (reads only)
Data byte, previous word is stolen (reads only)
Error Code (reads or writes)

11 will never occur

Figure A-64. Interpretation of checksum E and S bits.

A.5.2.23

Upsiream Message Types

The previous discussions about message formats can be brought together to produce
an enumeration of the possible Upstream Message types. T}us summary is shown in

Figure A-65.

TYPE = #WORDS

STOLEN or ERRORS

RETURN MSG FORMAT -

write any none _ XC
" any error 2C
read non-multi none . DDDDC
St either on wordl ‘DDDEC
two-words none DDDDDDDDC
" either on wordl DDDEC
" stolen on word2 DDDDDDDDC
three-words = none - PDDDDDDDDDDDC
" . either'on wordl . DDDEC :
" stolen on word2 DDDDDDDDC
" stolen on word3 DDDDDDDDDDDDC
four-words none - ~ DDDDDDDDDRDDDDDDC
L either on wordl - DDDEC
" stolen on word2 DDDDDDDDC
" stolen on word3 DDDDDDDDDDDDC
" . stolen ‘on word4 DDDDDDDDDDDDDDDDC
NOTE; Ffame is high for entire return message.
X = don“t care
Z = always an Error Code
E = Error Code (Checksum bit 5 = 1)
= Data Byte (Checksum bit 5 = 0}
C = Checksum Byte
Figure A-65. Upstream message types.
364 BBN ACI Proprietary Draft: 9/20/88

[st R | ot R | cousi SR | -omod SR | R | unies

§ e

Butierily Il Hardware Architeciure A SIGA Specification

A5.2.2.4

Checksum Caléulation

Checksum support for the Server is described in the “Requestor/Operation/Check-
sum Calculation” section. The actual calculation performed by the Server is shown in
Figure A-66. Figure A-66 shown the calculation for a single word read message. For
read messages with more words, those bytes would be included in the same manner as
the data bytes in the figure. For write messages, the data field would be missing entire-
ly from the calculation and only the error byte would be included.

CS<3> = exor(D31,D27,D23,D19,D15,D11,D7,D3,0)
CS<2> = exor(D30,D26,D22,D18,D14,D10,D8,D2,0)
CS<l> = exor(D29,D25,D21,D17,D13,D9,D5,D1,E)

CS<0> = exor(D28,D24,D20,D16,D12,D8,D4,D0,8)
. ..where,

CS<3..0> = message checksum

Figure A-66. Equation - message checksum (single-word read, see text).

A5.22.5

Draft; 9/20/88

Rejects

A Reject is the assertion of Reverse for exactly one Switch Interval. Rejects are not,
strictly speaking, messages; because the Switch data pins do not carry any known data.
The Server produces a Reject (assertion of Reverse for only one Switch Interval) in
either of three conditions: 1) An addressed downstream T-Bus slave is found to be

locked during an Initial Switch Message, 2) The Server has been configured to reject all

Downstream messages, or 3) The Server’s SRU state machine is busy while trying to
return to its “idle” state. :

During the Initial Switch message, the targeted Downstream device may, in fact, be
locked to a device other than the Server. The Server issues a Reject to indicate this fact
to the Upstream Requestor. Once the Server has successfully locked some device, itis
still possible for a Locked Message to attempt an access to device other than one to
which the Server is currently locked. In this situation however, the Server does NOT
issue a Reject. Instead, it sends an error response to the upstream Requestor. (See:
“Error Reporting”)

The Server can also be configured - via the Requestor_ConfigA.Ena_SOC bit - to is-
sue a reject on any new incoming message. This is a synchronized enable such that it
can be asserted/negated at any time, The Server will continue to process any pending
transactions but will prevent any new ones. Thus, the Server can be “gracefully” re-
moved from the Switch interface.

BBN ACI Proprietary ' 365

A: SIGA Specification ' Butterfly Il Hardware Archirecture

A5.23

A5.2.4

A.5.2.4.1

366

‘Whenever the Server is in any state other than its “idle” state (locked or unlocked), it

will refuse new attempts at a connection (Frame high preceded by Frame low for for at
least two Switch Intervals) by issuing a Reject. There are many instances when a new
connection attempt would indicate an Switch protocol violation, and thus a Reject is-
sued by the Server would make little difference. However, there are some situations
where the Server would correctly issue a Reject while it is off processing some event.
For instance, a drop-lock would cause the Server to begin issuing a FREE-LOCK on
the T-Bus. H new downstream Switch message attempted to access the Server beforeit
finished the transaction, the Server would issue a Re_]ect

T-Bus Interface

| The Server supports the standard T-Bus protocol with some small limitations. For

one, the Server does NOT support unaligned transfers which fall across word (32-bit)
boundaries. The Server also expects to see an ERROR response as the FIRST re-
sponse from a T-Bus Slave if that slave is going to issue any ERROR’s. If the Slave
cannot issue an ERROR in the cycle immediately following the T-Bus request (i.e., the
first response cycle), it must assert T_NSPAUSE _xxx until it decides if the requestis an
€rror or not. '

LCON Interface

The LCON is a the physical and logical link between the SIGA-Server and the “input”
port of the Switch Gate Array (SGA). In other words, for the SIGA, the LCON inter-
face is the logical Switch interface. The LCON provides the Server with: 1) level con-
version to and from the ECL levels of the SGA and 2) reclocking of data, Frame,
Reverse to and from the SGA.

Figure A-67 shows the Server’s LCON-(Switch) Interface Pins.

PIN NAME TYPE FUNCTION

S_DATA<T7..0> bidirectional Server-LCON data bus

'S_FRAME input Frame input from Switch
S_REVERSE . - output " Reverse output to Switch
S_NENA_BACK input

LCON TTL driver enable

Figure A-67. Server LCON (Swi'ich) _'interface pins.

Data Bus Enable Control

* The Server controls the enables of both its own output drivers and the LCON’s output

drivers to the SIGA-LCON data interface - §_DATA < 7..0>. It does so in 2 manner
complementary to the Requestor’s method (see “Requestor/Operation/LCON Inter-
face/Data Bus Enable Control”). The Server uses the same concept of “Talk” and “Lis-
ten” mode as the Requestor.

BBN AC| Proprietary Draft: 9/20/88

)

o e o o o

=

= B

Butterfiy Il Hardware Architecture - A: SIGA Specification

A.5.3

A.5.3.1

The Server is considered “quiescent” when it is not transmitting messages and not
waiting for any replies. When quiescent, the Server is in Listen Mode. The Server tries
to stay in Listen Mode whenever possible, making the transition to Talk only for the
absolute minimum time necessary. This situation is the mirror image to the Reques-
tor. It is always in Talk Mode when quiescent and tries to stay in Listen mode for as
little time as possible.

“When the Server receives the checksum of a downstream message, it transitions to Talk

mode - via the “dead” state. It remains in Talk mode until the T-Bus transaction is
complete and the upstream return message has been sent. Once the upstream check-
sum has been sent, the Server transitions immediately into Listen mode (no contention
is possible - as with the Requestor).

TCS Control Unit (TCU)

The basic purpose of the TCS Unit (TCU) is to allow the Test and Control System
(TCS) Slave Processor access to the T-Bus interface - in essence, to act as a protocol
converter. Normally, this involves the TCU acting like a T-Bus Master - performing
reads and writes. However, the TCU is flexible enough so that it can aiso generate or
“spoof” responses for any T-Bus Master or Slave. A “spoofed” response essentially
involves issuing a response on the T-Bus in the absence of a request. This can used, for
instance, to free-up an observing T-Bus Master who's locked Slave has failed. In this
case, the TCU can “make believe” that IT is the “failed” slave.

A secondary function of the TCU is to allow the TCS Slave Processor DIRECT access
to the CSU Map, rather than forcing it to make an access via the T-Bus interface. This
is useful for fault-tolerance and bootstrapping. '

1/O Description

The TCU interface is composed of four pins on the SIGA. The pins and their basic
functions are shown in Figure A-68. '

C_CLK

CIN

C_OUT

The data shift clock. Data is shifted into the SIGA on each rising edge
of C_CLK. Data is shifted out of the SIGA on each falling edge of
C_CLK. :

TCS data into the SIGA.

TCS data out of the SIGA. This is a tri-state signal which is driven '
when C_NEXECUTE is asserted (=0).

C_NEXECUTE Asynchronously initiates execution of a command (=0) and enables

Draft: 9/20/88

C_OUT. In addition, negating C_NEXECUTE (=1) resets the TCU
interface.

Figure A-68. TCU 1/O signal description.

BBN ACI Proprietary 367

A: SIGA Specification | Butterfly Il Hardware Archirecture

A5.3.2 Read/Write Operation

The TCU contains 16 addressable registers - each 8 bits wide. The TCS Slave canread

any register by clocking-in the required address (4 bits), a Read/Write bit (= 1), and

assert C_ NEXECUTE (=0). A read operation is illustrated in Figure A-69. Some
additional details for Read operatlons - not apparent from Figure A-69 - are now dis-
cussed.

1. C_IN data is clocked-ir on the positive edge of C_CIK and C_OUT data is
clocked-out on the negative edge of C_CLK.

2. Datacan be clocked in or out at any desired rate, provided that the AC specifica-
tions of the C_CLK pin are not violated. The duty cycle of C_CLK is variable
within the AC specifications. There is no MAXIMUM high (1) or low (=0)

~ time for C_CLK. _

3. - Reads are non-destructive and can be aborted at any time.

4. C_NEXECUTE is not synchronized with C_CLK and can be asserted at any
time after the address and Read/Write bit has been clocked-in,

5. TheC_OUT pin may be used to monitor, in real time, the value of a particular bit.
This is done by reading the appropriate register, shifting-out the desired bit us-

- ing C_CLK, and then holding C_CLK steady. C_CLK can be held in either state
(1 or 0) as long as it does not make another positive transition.
6. Extra data bits preceding the negative transition of C_NEXECUTE, areignored.
inactive | addr in | data out
C_CLK HHHHH HHHHHHHH
C_IN .. ada2alalpp......coviiiiinininn,
C_NEXECUTE HHHHHHHHHHHHHHHHHHHHHH
C_OuT e d7d6d5d4dsd2dido. ..
. .where,
a3..a0 = address of register to be read
d7..d0 = data from read register
PP = Read/Write bit (=1) '
Figure A-69. Timing ~ TCU read operation.

A write operation is performed by clocking-in four bits of data, 4 bits of address, a

Read/Write bit (=0), and then asserting C NEXECUTE (=0). This is illustrated in

Figure A-70. Some additional details for Write operations - not apparent from

Figure A-70 - are now discussed.

1. C_IN data is clocked-in on the positive edge of C_CLK and C_OUT data is
clocked-out on the negative edge of C_CLK.

2. Data can be clocked in or out at any desired rate, provided that the AC specifica-
tions of the C_CLK pin are not violated. The duty cycle of C_CLK is variable

368 BBN ACI Proprietary | | Draft: 9/20/88

)

Butterfly i HardWare'Archi_tecture e o R s " A: SIGA Specification

within the AC specifications. There is no MAXIMUM high (=1) or low (=0)
time for C_CLK. _ |
3. Reads are non-destructive-and can be aborted at any time. Reads of the

TBUS_Response register can be aborted as well. However, if this is done AF-
TER C_NEXECUTE has been asserted, the T-Bus operation may be aborted.

4. C_NEXECUTE is not synchronized with C_CLK and can be asserted at any
time after the address and Read/Write bit has been clocked-in.

5. C_NEXECUTE need only be asserted for a short moment to begin execution of
the command. The minimum low time is described in “AC Specifications”.

6. . Bxtra data bits preceding the negative transition of C_NEXECUTE, areignored.

inactive | command in | exec

C_CLK HHHHHHHH HHHHH
CIN e d7d6d5d4d3d2d1do. .a3a2alalpp, . v v ..
C_NEXECUTE HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH HHHHH
COUT . —m—m————e _ e do. , =~—
. .where,
a3..a0 = address of register to be written to
d7..d0 = data to be written
PP =

Read/Write bit (=0)

Figure A-70. Timing - TCU write operation.

Register Map
The register n‘iap for the 16 TCU i'egisters is shown in Figure A-71.

Draft: 9/20/88 'BBN ACi Praprietary 369

AL SIGA Specnfncat:on Butterfly Il Hardware Archirecture

370

a3..a0 DESCRIPTION

- T_AD<7..0> (data)
T_AD<15..8> (data)
T_AD<23..18> (data)
T_AD<31..24> (data)

W n o

T_AD<7..0> (addr)
T_AD<15..8> (addr)
T_AD<23..16> (addr)
T_AD<31..24> (addr)

-1

TBUS_Response
TBUS_Command
TBUS_Command Modifier 0O
TBUS_Command Modlfler 1

o> © m

cSsu Map<7..0>
© CSU Map<8>

unused

unused

= EgaQ

Figure A-71. TCU register map;

Referring to Figure A-71, registers 0 through 3 are special registers. For write opera-
tions, their contents are loaded, via the TCU interface, with the data to be written TO
some T-Bus slave. For read operations, their contents are replaced with the data read
FROM some T-Bus slave. Registers 4 through 7 are loaded ONLY by the TCU inter-
face. The contents of these registers are placed on the T-Bus during the address phase
of a T-Bus request.

The registers at address “C” and “D” are used to initialize CSU_Map <8.0>. Regis-
ter “D” - bit “0”, corresponds to CSU_Map < 8 >. Bits 7through 1 of register “D” are
unused. Figure A-72shows the definition of the TBUS Response and Command Reg-
isters. Referring to Figure A-72, the TBUS_Response register is a read-only register
which is valid after a T-Bus operation has been executed. The “Done” bit is monitored
after a T-Bus command is initiated by the TCU. When asserted (= 1), it indicates that
the operation is complete. See the “T-Bus Operations™ section for more detail. The
“Drive_AD?” bitindicates that the T_AD Bus was driven during a T-Bus access (= 1).

The remaining bits in the TBUS Response register are the “responses” received from
the T-Bus operation.

BBN ACI Proprietary Draft: 9/20/88.

3

i s

Butterfly §i Hardware Architecture A: SIGA Specification

Draft: 9/20/88

Register: TBUS_Response<7..0> (read only)

BIT/FIELD FUNCTION (read only)

<7> Done

<6> Drive_AD

<5> T_DRIVEN

<4> M_PARITY

<3> T_AD<32>
<2..0> T_RR<2..0>

Register: TBUS_Command<7..0>

BIT/FIELD FUNCTION

<7..6> output T_AD<33..32> (addr)
<5..3> output T_SIZE<2..0>
<2..0> output T_RR<2..0>

Register: TBUS_Command Modifier 0<7..0>

BIT/FIELD FUNCTION

<7,.0> unused

<3> Response

<2> output T_AD<32> (data)
<1..0> output T_PATH<1..0>

Register: TBUS_Command_Modifier_1<7..0>

BIT/FIELD FUNCTION

<7> output T_SYNC
<6..5> output T PRIORITY<1l..O>
<4..3> output T_LOCKOP<1l..0>
<2..0> output T SOURCE<Z..0>

Figure A-72. Register definitions -
TBUS Response and Command registers.

The TBUS_Command and BUS_Command_Modifier_1 registers contains the indi-

- cated fields to be placed on the T-Bus during the address phase of any operation. The

TBUS_Command_Modifier_0 register outputs the “T_PATH?” field during the ad-
dress phase of any operation and the T_AD <32> bit dunng the data phase of a write

operation.

The “Response” field of the TBUS_Command_Modifier_0 register, has a special func-
tion. When asserted (= 1), the TCU will place a 2“0” onthe T_REQUEST and drive the
T-Bus FOR A SINGLE CYCLE with the register settings intended for the address

BEN ACI Proprietary - 37N

A: SIGA Spec:|f|cat|0n © Butterfly Il Hardware Archirecture

A5.3.4

A.5.3.5

A.5.3.6

A.5.4

A5.4.1

372

-phase of a T-Bus cycle. This is used for “spoofing” a T- Bus response. When the “Re-

sponse” field is a “1”, the TCU makes a normal T-Bus Request with T REQUEST
asserted (=1).

Normal T-Bus Operations

The TCU can be used to read and write, one to four bytes. Multi-word transfers are
not allowed. The TCU can also OPEN and FREE locks although this is not recom-
mended because the TCS Slave interface is relatively slow.

A read or write operation is set up by loading the desired data into the registers. The
operation is actually initiated by a read of the TBUS_Response register. Since the
MSB of this register is the “Done” bit, C_CLK should be disabled just after C_NEXE-
CUTE is asserted (= 0). This allows asynchronous monitoring of the “Done” bit, Ter-
minating the read by negating (= 1) C_NEXECUTE will abort the T-Bus request.

The TCU will retry after becoming REFUSED but will ignore a REFUSED
LOCKED. In other words, the TCU will not become an “observing master”.

| Special T-Bus Operations

The TCU can FREE-LOCKS for any T-Bus master by specifying the correct
T_SOURCE field value and performing a write operation. The TCU can also spoof
any-one-cycle response of a Slave by asserting the “Response” bit in the TBUS_Com-
mand_Modifier_{ register. For instance, it can issue a COMPLETED or ERROR for
some Slave that is known to be faulty.

CsSu Mab Initialization

The CSU_Map is a 9-bit quantity which maps the SIGA CSU into a desired 8K page.
This quantity is initialized by the TCU and is one of the first things that must be done
to the SIGA upon power-up. If the CSU_Map is not initialized, it defaults to the set-

" ting of all 1’s.

Configuration/Status Unit

The Configuration Status Unit (CSU) is the T-Bus Slave interface which allows any

T-Bus master read and write access to the SIGA's configuration and status registers.

Normal Register Accesses

The CSU is limited in its support of the T-Bus protocol and is NOT optimized for
minimum wait states (Slave pause cycles). The CSU will respond to a T-Bus query
ONLY when T-Bus bits T_AD <24..16> match CSU_Map <8.0>. The CSU_Map
is initialized by the TCU (See: TCS Control Unit/CSU Map Initialization).

BBN ACI Proprietary Draft: 9/20/88

=

Butterfly || Hardware Architecture G o A: SIGA Specification

In the cycle following a request to the CSU, the CSU will either respond with an ER-
ROR or go on to complete the requested function. Figure A-73 shows the TCU re-

sponding with an ERROR. :
T-Bus cycle # | O B N R T
T-Bus cycle | req | resp | end |
T_NSPAUSE_SIGA HHHHHHHHHH HHHHH
T_RR<3..0> XXXXXXXXeeeee
. . .where,
X..x = invalid response

i

e..e = ERROR response

Figure A-73. Timing - CSU ERROR access.

‘Note from Figure A-73, that T_NSPAUSE_SIGA is asserted for only one cycle. The
ERROR response is triggered by exactly two conditions: 1) T_SIZE<2> = 1, or 2)
T_LOCKOP <1> = 1. This means that the CSU will not support multi-word writes
or locking. A normal read and write operation are shown in Figure A-74. Note from
Figure A-74 that T_AD < 32> is always a “0” on a read and a “don’t care” on a write.
In addition, during write operations, data is set up to the configuration latches during
cycle #1, written to them during cycle #2, and held at the configuration latches during

cycle #3.

T-Bus cycle # o | 1| 2 | 3 |
T-Bus cycle | req | resp | resp | end |
T _NSPAUSE_SIGA HHHHHHHHHH HHHEH
T_RR<3..0> S 1TTTTIT TV TXRRKXKXXXKKKKXKCCCC

T_AD<32> (read) 77777777777 7XXXXXXXXXXXXX
T_AD<31..0> (read) 277777777777 XXXXXAXXXXXXXRRRR

T_AD<32> - (write) XEXXXXKAXXXXAAX XK RXKKXKXKKKEXK
T AD<31..0> (write) 797777777 TWNWWWAWWWWWWWWWWWWWW

. .where,

invalid response
COMPLETED response
invalid data

valid write data

1 4 n i

E X O M
£ X0 x

Figure A-74. Timing - normal CSU read/write.

Draft: 9/20/88 - BBN ACl Proprietary ' 7 373

A: SIGA Specification Butterfly Il Harcdware Archirecture

A5.4.2

A.5.4.3

Synéhronizéd Accesses

Certain accesses to the CSU must be synchronized to the One Mlcrosecond Pulse
(OMSP). These include: 1) read/writes of the Real Time Clock, and 2) writes to the
TONI_A or TONI_B registers. This mechanism is described in: “Requestor/Opera-
tion/RTC and Related Functions”. Essentially, ail this means to the CSU timing dia-
gram_ in Figure A-74, is that cycle #2 is repeated until the synchronization pulse is
recelved from the RTC or TONI_A/B controller.

| _
Intepleaver Loader

The CSU provides support for loading and reading the Interleaver Modulus Ram
through the use of two special registers: Interleave_Address and Interleave_Data; and
an external pin to the SIGA: I_NACCESS. Reads and writes to both the Inter-
leave. Address and Interleave_Data registers are different than accesses to other con-
fjguratlon/status registers in the SIGA. The structure of the Interleaver Address

' reglstcr is shown in Figure A-75. The structure of the Interleaver_Data register is

shown in Figure A-76. As seen in Figure A-76, read/write access to the I_D register
does [not involve any data transfer within the SIGA

. Register: Interleave_aAddress

. .where,

|
i A..A = interleaver address

Figure A-75. Register definition - Interleave_Address.

A.5.4.3.1

374

Register: Interleave_Data

Figure A-76. Register definition - Interleave_Data.

Address Register Access
I ' :

When a T-Bus master reads the Address_Register, the CSU immediétely responds

withia Slave Pause cycle by asserting (=0) the T_NSPAUSE_SIGA pin, as it does with
all other accesses. However, in the following cycle, the CSU also asserts the I NAC-
CESS pin and places the contents of the Interleave Address register on the T-Bus.

BBN AC! Proprietary ' Dr-aﬂ: 9/20/88

B T T

B D CED am e Sl

Butterfly Ii Hardware Architecture , oo : A: SIGA Specification

The CSU then waits for exactly seven (7) T-Bus cycles in this state. The mapping of the
I_A register to the T-Bus during this “wait” state is shown in Figure A-77, part (a). In
the cycle following the wait period, the CSU then negates (=1) both
T_NSPAUSE_SIGA and I_NACCESS, and maps the I_A to the T-Bus as shown in
Figure A-77, part (b).

T_AD<33> = Interleave_Address<l>

T _AD<32> = Interleave_Address<0>

T_AD<31..0> = Interleaver_Address<3l..0>

(a) wait (cycle 3 - 9)

T_AD<33> = 0
T_AD<32> =0 :
T_AD<31..0> = Interleaver_Address<31..0>

(b) end (cycle 10)
Figure A-77. Interleave_Address register to T-Bus mapping.

The timing for writes to the I_A register is exactly the same as for reads. The actual
timing for Interleave_Address register read/write access is shown in Figure A-78.

T-Bus cycle # | 0o | 1 | 2 [...] 10 | 11 |
T-Bus cycle | req | resp | wait |...| end | 7 |
T_NSPAUSE_SIGA HHHHHHHHH e HHHHHHHHHHH
T_RR<3..0> ... Gctecececce
I_NACCESS (read) HHHHHHHHHHHH . HHHHHHHHHHH
- T_AD<33..0> (read) --——— ??77aaaaa. . .aaabbbb
I_NACCESS (wriﬁe) HHHHHHHHHHHH S HHHHHHHHHHH
T_AD<33..0> (write) dddddddddddd. . .dddd???
. .where,

COMPLETED response

"wait" type read of I_A (bit swapping)
"end" type read of I_A (bit masking)
data written TO the I_A register

-0 0l

. oe o
aveo

Figure A-78. Timing - CSU Interleave_Address register read/write access.

A5.4.3.2 Data Register Access

The Interleave_Data access is EXACTLY the same as the Interleave_Address access
EXCEPT for two key features: (1) during writes, no data is actuaily stored in the SIGA,
and (2) during reads, the SIGA does NOT drive the T_AD <33..0> field. During this
time, logic external to the SIGA wdl manipulate the Modulus Ram, and the SIGA is

Draft: 9/20/88 BBN ACI Proprietary 375

A: SIGA Specificatibn

A5.4.4

AS545

376

Butterfiy H Hardware Archirecture

basically being used as an address decoder and T-Bus control signal driver. The ac-’
tual timing for Interleave_Data register read/write access is shown in Figure A-79.
Note from Figure A-79 that the CSU temporarily drives the T-Bus durmg cycle #1.

The data is unknown,

T-Bus cycle # | 0 | 1 [-2 |...

| 10 | 11 |
T-Bus cycle | req | resp | wait |...] end | 7 |
T _NSPAUSE_SIGA HHHHHHHHH HHHHHHHHHHH
T_RR<3..0> ceeee
I_NACCESS (read) HHHHMHHHHHHHHH . HHHHHHHHHHH
T_AD<33..0> (read) xxxxxasaaasga-—-bb...bbbbbbb
I_NACCESS (write) HHHHHHHHHHHH HHHHHHHHBHH
T_AD<33..0> (write) T2 T7IRRNK, , L XXXXXXKXX
. .where,

¢..c = COMPLETED response _

a..a = unknown data driven by CSU (only for one cycle)

b..b = data from/to_Interleaver (not driven by SIGA)

Figure A-79. Timing - CSU Interleave_Data read/write access.

Debug Support

The CSU supports “freezing” a CSU read or write for debugging purposes. This is
accomplished by initiating a normal T-Bus access (see Flgure A-74, “Timing - normal
CSU read/write”) and asserting (= 0) and holding the pin, M_NDEBUG, during cycle
#1 and #2. This will cause the CSU to repeat cycle #2 indefinitely untit M_ NDEBUG is
negated (=1). When this occurs, the CSU will continue with cycle #3 as normal.

For read cycles this means that T_AD <31..0> will have the real-time state of any
register being read. By reading a test register, for example, the state machine of the
STU can be observed while it sends a message.

For write cycles, the use is somewhat limited. It simply meansthatT AD<31.0> can
be manipulated in real time from the master (or logic analyzer). Since during cycle #2
the configuration latches are transparent, so that any external manipulation will be
seen internally in real time.

Restriction Summary

The following restnctmns apply to CSU operation: [TO BE SUPPLIED]

BBN ACI Proprietary Draft: 9/20/88

)

=

Buttertly ii Hardware Architecture : A: SIGA Specification

A.6

A.6.1

Draft: 9/20/88

Programming Model
This section provides a memory map of the previously defined SIGA registers, as well
as a compilation of all SIGA Error Codes.

1. The CSU will flag as an ERROR any multi-word access or an OPEN or MAIN-
TAIN. Therefore, the CSU does not support these operations. However, byte
masking on writes IS supported.

2. The CSU will NOT check for unaligned transfers. It is illegal to request an opera-
tion with an unaligned address.

3. Synchronized Accesses rely on the presence of R_CLK tocomplete. HR_CLKis
non-existent, the CSU will pause the T-Bus Master mdeﬁmtely The oniy way 1o
release the pause would be to assert the M_NRESET pin.

4. The Stolen bit (T_AD <32>) is not supported on either reads or writes.
Memory Map

Figure A-80 shows the memory map of the various registers. Note from Figure A-80
that the “M” field is programmable via the CNU_Config.CSU_Map bits.

BBN AC! Proprietary ' , 377

A: SIGA Specification

Butterfly Il Hardware Archirecture

T_AD<24..0> REGISTER
15 12 2 10
| | 1]
M 000 XXXXXXXX000 bb TONIA_Config

' 001

M 001 XXXXXXXX000
001

M 100 OXXXXXXX000
001
010
011
100
101
110
111

1XXXXXXX000
001
010

M 101 OXXXXXXXXXX

bb

bb
bb

bb

bb
bb
bb
bb
bb
bb
bb

bb
bb
bb

XX

Time_Of_ Next_InterruptA

TONIB_Config
Time_Of_ Next_InterruptB

Protocol Timer_Config | Message_Class
Transmit_Time Config

Priority_Time Config
Requestor_Configa

Requestor_ConfigB

Requestor_TestA

Real_Time_Clock (hi/lo)

<reserved>

Server_Configh
Server_ConfigB

Server_TestA -

Interleave_Address_Reg

IXXXXXXXXXX xx Interleave Data_Reg
.. .\irhere,
M = (T_AD<24..16> = CNU Config.CSU_Map<8§..0>)

Bl KL ED OEDI O EDXD

bb = 00 byte 0 <31..,24>

01 byte 1 <23..16>

10 byte 2 <15..8>

11 byte 3 <7..0>

no byte addressing capability

XX

Figure A-80. SIGA memory map.

A.6.2 Error Code Summary

Figure A-81 presents an Error Code summary for the SIGA. Figure A-82 summa-
- rizes the Error Code definitions.

378

BBN ACI Proprietary Draft: 9/20/88 -

Bl oo EBEoEmoED o ET T

N S N DN

Butterfly (| Hardware Architeciure A: SIGA Specification

Requestor/CSU Error Codes:

7 0
|
PPPPdcba.
d c ba Requestor/ CSU Error
0 000 Maintain Absent-(2a)
0 001 Maintain Present-(2b)
0010 Stolen Verify-(1)
0 011 Lock_Address-(2)
0100 Wait_TO-(3a)
0101 Idle TO-(3b)
0110 Rej_Abort(4)
0111 Rej TO-(5)
1000 Reverse-(6)}
1001 Check-(7)
1010 Mise. CSU Error

.. .where,

P..P = Requestor_ConfigA.Error_Prefix<3..0>

Priority is from highest (1) to lowest (8).

Within a given priority, errors are mutually
exclusive (i.e., 4a,b...}. :

Server Error Codes:
7 o
I l

PPPPPPba

Server Error

Downstream_Refused
Downstream_Write
Downstream Late
Downstream OTL

HHOO I T
=HOoOHO I

. . .where,

P..P = Server_ConfigA.Error_Prefix<5..0>

Figure A-81. Error code summary.

Maintain_Absent An NORMAL was issued to the Requestor
during its idle state and it was locked.

Draft: 9/20/88 BBN ACI Proprietary 379

A: SIGA Specification

Maintain_Present

Lock_Address

Wait_TO

Idle_TO

Rej_Abort

Rej_TO

Reverse
Check

CSU Error

Downstream_Write
| Downstream_OTL
Downstream_Late

Downstream_Refused

380

Butterfly Il Hardware Archirecture

A MAINTAIN was issued to the .
Requestor during its idle state and it was NOT
locked.

A Function Request was made to a locked

Requestor during its idle state with a node address
was different than that which opened the locked
sequence. I

The Switch Transmit Connection Timer
overflowed while the Requestor was waiting for a
Function Response.

The Switch Transmit Connection Timer
overflowed while the Requestor was in its idle
state.

The Switch Transmit Reject Timer was forced
into overflow by the REJ_ABORT input pin.

~ The Switch Transmit Reject Timer overflowed

while the Requestor was attempting to open a
connection.

The Requestor detected an incorrect polarity
of the Reverse signal during a Function Response.

The Requestor detected an incorrect Checksum
during a Function Response.

An error was made accessing the CSU. It

could be one or both of the of the following: 1) An
OPEN lock was requested or 2) A Multi-word transfer
was requested. '

A downstream write error was detected
while the downstream Server was sourcing data.

A downstream T-Bus slave did not
respond to the Server’s request.

A downstream T-Bus slave responded
with a LATE ERROR. ‘

A downstream T-Bus slave responded
with REFUSED-LOCKED when the Server thought itself
locked. ' '

Figure A-82. Error code definition summary.

BBN ACI Proprietary Draft: 9/20/88

)

e EOED D

S T DN N N 3

Butterfly il Hardware Architecture a - A: SIGA Specification

A7

A.7.1

A7.2

Draft; 9/20/88

Special Topics

This section describes some of the special topics relating to SIGA operation.

Initialization States -

The external Reset signal is resynchronized by the SIGA for use by all synchronous
logic clocked by all three major clocks (R_CLK, S_CLK and T_CLK). When Reset is
applied and then released, all internal storage logic that needs to be initialized, will be
soinitialized. The SIGA will now be in its first initialization state, known as the Quies-
cent State.

In this state, the SIGA Switch and T-Bus interfaces are partially disabled. The Serv-
er's Switch interface responds to any assertions of downstream Frame with Rejects.
The Requestor’s Switch interface ignores any assertions of the upstream Reverse. The
Server’s T-Bus interface makes no T-Bus requests and the Requestor’s T-Bus inter-
face responds to any remote function requests with a REFUSED. The Configuration/
Status Unit and the TCU, however, are operational. Normally, in the Quiescent state,
the TCU will initialize the CSU’s mapping logic via the CNU_Con-
fig.CSU_Map <8..0> register. Once the Control Net initializes the CSU_Map, any
T-Bus master can then initialize the SIGA registers via the CSU.

Once this is accomplished, the SIGA is in the Operational State. The Operational
State is the normal operational mode of the SIGA.

Synchronization

Because of the use of multiple clocks, the SIGA design inherently requires the use of
synchronizers to implement handshaking across clock boundaries. Some of these syn-
chronizers are in non—critical paths and are thus implemented in the most cost-effec-
tive manner. In particular, these synchronizers are of the “large uncertainty,
fixed—-delay” variety. This means that there delay is not programmable and that “in-
put-to—output” delay is not constant over changes in input. These are used in areas
such as: 1) Between the external reset pin, M_NRESET, and the internal reset destina-
tions, 2) Between the TCU negation of C_NEXECUTE and the T_Bus access. These
synchronizers are designed to provide a MINIMUM of 100 ns settling time (T_CLK
< = 22 MHz, R_CLK,S_CLK < = 45 MHz).

The other variety of synchronizers - used in critical path applications - are the “vari-
able delay, zero uncertainty” synchronizers. These are used between the T-Bus and
Switch interfaces along the Function request/response paths. These are the synchro-
nizers which have four bits of configuration to control the settling time. Figure A-83
shows the various settings for ALL variable-delay synchronizers. Figure A-83 should
be used in combination with the clock period of the logic RECEIVING the synchroniz-
er data to determine the actual settling time. For instance, if a 100 ns settling time on
the positive edge is desired for the STU Synchronizer, the register: Requestor_Confi-
gA.STU_Sync<3..0>, should be set toa “0110”. This is because assuming R_CLK =

~ BBN ACi Proprietary 381

A: SIGA Specification Butterfly i Hardware Archirecture

40 MHz (25 ns period), the synchronizer will require four clock periods - at 25 ns apiece
- to obtain the tota! of 100 ns.

On the other hand, the BIU Synchronizer control, set by Requestor_Confi-

gA.BIU_Sync <3..0>, would need a setting of “0010” to obtain the same settling time.

Here, of course, the clock period is twice as long as the STU Synchronizer so the num-
ber of synchromzer clock delays is half.

3210 # CLOCK DELAYS TRANSFER EDGE
0000 - 1 Positive
0001 1 Negative
0010 2 Positive
0011 2 Negative
0100 - 3 Positive
0101 3 Regative
0110 4 Positive
0111 4 Negative
1000 5 Positive
1001 5 Negative
1010 ILLEGAL -
1011 ILLEGAL -
1100 ILLEGAL -
1101 o ILLEGAL -
1110 ' ILLEGAL -

1111 ILLEGAL : -

Figure A-83. Variable-delay synchronizer settings.

NOTE o o, T, NN M T N i Y T e M T Bt T T T S T T e

Currently, it is recommended that only the POSITIVE transfer edge be used for any
setting.

o, T T T T M T T T T T T T e e i T N T M T T T e T T T

NOTE SR N N N ""-..\"\'\\\.\\\.\,\\\.\\\.H.\\\AM‘\.‘\.'\\R\\RE\,M\K\‘\.K\ o ¥

It has been determined that a settling time of 100 ns is a reasonable goal for the varia-
ble-delay synchromzers

S R R R R R RO Y '\u\\\\\\"\ R M\\\\\\\H\‘\.'&'\‘K\\

A8 Pin Description and Pinout

The next page begins a pin description of the SIGA.

280 . BBN ACI Proprietary - Draft: 9/20/88

B D D O ETD

PIN NAME
C_CLK

C_IN
C_NEXECUTE

C_ouT

F_AD<24..16>
F_PATH<1..0>
F_REQUEST
F_RR<2..0>
F_SIZE_2
F_SOURCE<2..0>
I_INTERLEAVED

I_MOD<8..0>
I_NACCESS

M_NDEBUG
M_NFLOAT
M_NRESET
M_NSELECT

M_PARA
M_PARITY

M_REJ_ABORT
M_SIXTY FIVE
M_TONIA_INT
M_TONIB_INT

R_CLK
R_DATA<7..0>
R_FRAME
R_NENA_BACK

R_REVERSE
S_CLK
S_DATA<T..0>
S_FRAME
S_NENA_BACK

S_REVERSE
T_AD<33..25>
T_AD<24..16>
T_AD<15..0>
T_CLK
T_DRIVEN

Draftﬁ 9/20/88

Butterfly i Hardware Architecture

TYPE

A: SIGA Specification

DESCRIFPTION

IN
IN
IN
ouT
IN
IN
IN

"IN

IN
IN
IN

IN
ouT

IN

IN

IN

. ouT

IN

IN

IN

our

ouT

IN

BID
ouT
ouT

IN
IN
BID
IN
ouT

ouT
BID
out
BID
IN -
ouT

TCU input clock
TCU data input

' TCU_execuge-handshhke input

TCU data output

T-Bus input for T_AD<24..16>
T-Bus input for T PATH<1..0>
T-Bus input for T_REQUEST
T-Bus input for T_RR<2..0>
T-Bus input for T_SIZE_2

T-Bus input for T SOURCE<2..0>

=0: do NOT use I_MOD<8..0> for route address

=1: use I_MOD<8..0> for route address.
Interleaver data input
=0: CSU Interleaver loader is active

=1: CSU Interleaver loader is NOT active

=0: Debug mode during CSU access (TEST ONLY)
=1; Do NOT enter debug mode (NORMAL MODE)

=0: Tri-state all outputs (TEST ONLY)

=1: Normal ocutput operation (NORMAL MODE)

=0; Hardware reset to SIGA

=1: Normal operational mode

=0: Select CSU, attach to T_PATH<1/0>
=1: Do NOT select CSU

Parametric nand tree output (TEST ONLY)

=0: No parity error during T-Bus response

=1: Parity error during T-Bus response
=0: Do NOT abort Switch retries

=1: Abort Switch retries

=0: 65 ms pulse NOT active

=1: 685 ms pulse active (one R_CLK period)

=0: TONIA interrupt is active

=1: TONIA interrupt is NOT active

=0: TONIB interrupt is active

=1: TONIB interrupt is NOT active
Requestor clock input

Requestor Switch data interface
Requestor Switch Frame output

=0: Enable LCON to drive R_DATA<T..0>

=1: Disable LCON from driving R_DATA<7.

Requestor Switch Reverse Input
Server clock input

Server Switch data interface.
Server Switch Frame input

=0: Disable LCON from driving S_DATA<T.

=1: Enable LCON to drive S_DATA<7..0>
Server Switch Reverse Input

T-Bus input/output for T_AD<33..25>
T-Bus output for T_AD<24..16>

T-Bus input/output for T _AD<15..0>
T-Bus input clock

T-Bus output for T_DRIVEN

BBN ACI Proprietary

0>

0>

383

A: SIGA Specification

384

T_ENA_HOLD
T_ENA_TDAT. 2
T_ENA_TDAT<1..0>
T_ENA_TRANS.1
T_ENA_TRANS. O
T_LOCkOP<1..0>
T_MPAUSE
T_NBGRANT_SIGM
T_NBGRANT_SIGS
T_NBREQ_SIGM
T_NBREQ_SIGS
T_NDRIVEN_SIGA
T_NSPAUSE_SIGA
T_PATH<1..0>

T_PRIORITY<1..0>
T_REQUEST

.T_RR<2..0>

T _SIZE.2
T_SIZE<l..O0>
T_SOURCE<2..0>
T_SPAUSE
T_SYNC

IN

- OUT

out

ouT

ouT
BID
ouT
IN
IN

our

-OUT

ouT

ouT

ouT
BID
ouT
ouT

ouT |

BID

ouT

ouT

BID

‘Butterfly Il Hardware Archirecture

'=0: Disable T-Bus input latches

=1: Enable T-Bus input latches

=0: Enable T_AD<33..0> drivers

=1: Disable T_AD<33..0> drivers

=0: Disable T_AD<33..0> drivers

=1: Enable T_AD<33..0> drivers

=0: Enable transaction T-Bus field
=1: Disable transaction T-Bus field
=0: Disable transaction T-Bus field
=1: Enable transaction T-Bus field
T-Bus input/output for T_LOCKOP<1..0>
T-Bus output for T_MPAUSE

=0: SIGA
=1: SIGA
=0:; SICGA
=1: SIGA
=0; SIGA
=1: SIGA
=0: SIGA
=1: SIGA
=0: SIGA
=1: SIGA
=0: SIGA
=1: SIGA

Master granted next T-Bus
Master NOT granted next T-Bus
Slave granted next T-Bus

Slave NOT granted next T-Bus
Master is requesting T-Bus
Master is NOT requesting T-Bus
Slave is requesting T-Bus

Slave is NOT requesting T-Bus
is driving T-Bus next cycle

is NOT driving T-Bus next cycle
is pausing T-Bus next cycle

is NOT pausing T-Bus next cycle

T-Bus output for T PATH<1..0>

T-Bus input/output for T_PRIQRITY<1,.0>:
T-Bus output for T REQUEST

T-Bus output for T _RR<2..0>

T-Bus output for T_SIZE.2

T-Bus input/output for T_SIZE<1..O>
T-Bus output for T_SOURCE<2..0>

T-Bus output for T_SPAUSE

T-Bus input/output for T_SYNC

The following page shows the SIGA pinout sorted by pin function.

BBN ACI Proprietary

Draft; 9/20/88

B D ED ED oEDTOED OED D OED

= oEm e R

e

Butterfly li Hardware Architecture

R15
T14
R14
P13
BO9
C09
A10
B10
c10
A1l
B11
c11
A12
A0S
AOT
co8
B14
Cco4
BO4
A04
FO3
Go3
FO1
FO2
BO2
MO2
MO1
L03
LO2
LO1
K03
K02
Kol
J03
P03
RO2
P14
T15
BO7
RO3
- c16
RO4
J02
P04
T03
P05
RO9
RO8
PO8
RO7

Draft: 9/20/88

SIGA PINOUT SORTED BY PIN FUNCTION

C_CLK
C_IN
C_] NEXECUTE

16
17
.18
.19
.20
.21
.22
.23
.24

9%6%%%%8%5"

oo

ATH. O
TH.1
EQ

"U"U
e e

ST

m:ﬂ:ﬂ‘éﬂ'«'ﬂ
Hm:uzu
(\:»—-og

ZEZ

UJ
(o]
[
A
Q|
=
(]

C_
F_.
F_.
F_.
F
F_,
F_.
F_.
F_.
F_.
F_|
F_
F_|
F_]
F_]
F_|
F_]
F_
F__
F_

SOURCE . 1
F_SOURCE. 2
I_INTERLEAVED
I_MOD.
I_MOD.
I_MOD.
I_MOD.
I_MOD.
I_MOD.
I_MOD.
I_MOD.
I_MOD.
I_NACCESS
M_NDEBUG
M_NFLOAT
M_NRESET
M_NSELECT
M_PARA
M_PARITY
M_REJ_ABORT
M_SIXTY_FIVE
M_TONIA_INT
M_TONIB_INT
R_CLK
R_DATA.0
R_DATA.1
R_DATA.2
R_DATA.3

001 Otk WO

I
I
|
I
I
|
|
|
|
|
|
I
|
I
I
I
|
|
|
|
|
|
|
|
|
I
|
|
I
|
|
|
|
I
|
I
I
I
I
I
I
|
I
I
I
|
I
|
I
|

RO6 R_DATA.8
P06 R_DATA.T
RO5 R_FRAME
TO5 R_NENA_BACK
TO4 R_REVERSE
T13 §_CLK
Ti2 S_DATA.O
P11 S_DATA.1
R1l S_DATA.2
T1l S_DATA.3
P10 S_DATA.4
R10 S _DATA.5
T10 S _DATA.6
POS S_DATA.T7
R13 S_FRAME
R12 S_NENA BACK
P12 S_REVERSE
P02 T_AD.O
NO3 T _AD.1
Fi4 T AD.10
F15 T_AD.11
F16 T_AD.12
Gl4 T AD.13
Gl5 T _AD.14
G16 T_AD.15
Hl4 . T _AD.16
H15 T_AD.17
J15 T_AD.18
J14 T_AD.19
POl T _AD.2
K16 T_AD.20
K15 T_AD.21
K14 T_AD.22
L16 T_AD.23
L15 T _AD.24
L14 T_AD.25
M16 T_AD.26
M15 T _AD.27
M14 T _AD.28
N16 T_AD.29
NO2 T_AD.3
N15 T_AD.30
N14 T _AD.31
P16 T_AD.32
P15 T_AD.33
NO1 T_AD.4
MO3 T_AD.5
HO2 T_AD.6
HO3 T _AD.7
GO1 T_AD.8

BBN ACI Proprietary

B12
c12
co3
BO3
A03
Cl4
c15
DO
D02
E01
AOB
co7
cos
BO5
co6
BO6

. C13

Ald
EQ2
EO3
Al13

- D14
D15 -

D16
El4
El5
E16
D03
Cco1
co2
B15
B13
A09
AlS
BO1
Bl6
Jol
J16
TOl
TO8

T16

AD2
A08
AlB
HO1
H16
RO1
R16
TO2
TOT7

A: SIGA Specification

T_DRIVEN
T_ENA_HOLD
T_ENA_TDAT.O
T ENA_TDAT.1

'T_ENA_TDAT. 2

T_ENA_TRANS.O
T_ENA_TRANS.1
T_LOCKOP.0
T_LOCKOP.1
T_MPAUSE

T NBGRANT_SIGM
T_NBGRANT_SIGS
T_NBREQ_SIGM
T_NBREQ_SIGS
T_NDRIVEN_SIGA
T_NSPAUSE_SIGA
T_PATH.0
T_PATH.1
T_PRIORITY.O
T_PRIORITY.1
T_REQUEST

D—]H
EEE]

385

A: SIGA Specification” Butterfiy Il Hardware Archirecture

PO7T R_DATA.4 | GO02 T_AD.9 | TOg VSS
TO6 R_DATA.5 | BO8 T _CLK - :

The following page shows the SIGA pinout sorted by pin number.

386 - BBN ACI Proprie{ary Draft: 9/20/88

=

-

|

Butterfly i Hardware Architeciure

AO2
A03
AO4
AO5
AO6
AO7T
A08

“A09
Al0
All
Al2
Al13
Al4
A15
Al6
BO1
BO2
BO3
BO4
BO5
BO6
BO7
BOS
BOY
B10
B11
B12
B13
Bl4
B15
B16
co1
co2
co3
Co4
co5
cos
co7
co8
cos
c10
c11
c12
c13
Cl4
Cc15
c16
D01
D02
DO3

Draft: 9/20/88

SIGA PINOUT SORTED BY PIN NUMBER
VSS | D16 T_RR.2 | N14
T_ENA_TDAT.2 | EO1 T_MPAUSE | W15
F_RR.2 | EO02 T_PRIORITY.OC | N16
F_CLK | E03 T_PRIORITY.1'| POl
T _NBGRANT SIGM | E14 T_SIZE.Q | Po2
F_PATH.0 | E15 T_SIZE.1l | PO3
VSS | E16 T_SIZE.2 | Po4
VDD | FO01 F_SOURCE.1 | PO5
F_AD.18 | FO02 F_SOURCE.2 | P08
F_AD.21 | FO3 F_SIZE 2 | PO7
F_AD.24 | Fl4 T_AD.10 | PO8
T_REQUEST | F15 T_AD.11 | PoO9
T _PATH.1 | F1l8 T_AD.12 | Plo
VDD | G601 T_AD.8 | P11
VsSs | GO2 T _AD.¢ | P12
VDD | G03 F_SOURCE.O | P13
I_INTERLEAVED | Gl4 T_AD.13 | P14
T ENA TDAT.1 | Gl5 T_AD.14 | P15
F_RR.1 | G168 T_AD.15 | P16
T NBREQ_SIGS | HO1 VSS | ROl
T _NSPAUSE_SIGA | HO02 T _AD.6 | RO2
M_NSELECT | HO3 T AD.7 | RO3
T CLK | Hl4 T_AD.16 | RO4
F_AD.16 | H15 T_aAD.17 | RO5
F_AD.19 | H16 VSS | ROG
F_AD.22 | Jor vDD | RO7
T_DRIVEN | J02 M_SIXTY FIVE | RO8
T_SYNC | JO03 I_MOD.8 | RO9
F_REQUEST | J14 T _ADR.18 | Rl0
T _SPAUSE | J15 - T_AD.18 | Ri1
VDD | Jls VDD | Ri12
T_SOURCE. 1 | K01 I_MOD.7 | R13
T_SOURCE. 2 | K02 I_MOD.6: | R1l4
T ENA_TDAT.0 | KO3 I_MOD.5 | R15
F_RR.O | K14 T_AD.22 | R16
T_NBREQ SIGM | K15 T_AD.21 | To1
T NDRIVEN_SIGA | K16 T_AD.20 | ToO2
T_NBGRANT_SIGS | LO1 I_MOD.4 | To3
F_PATH.1 | Lo2 I_MOD.3 | To4
F_AD.17 | LO3 I_MOD.2 | TO5
F_AD.20 | L14 T_AD.25 | TO6
F_AD.23 | L15 T_AD.24 | TO07
T_ENA_HOLD | L16 T_AD.23 | TOB8
T_PATH.O | MO1 I_MOD.1 | To9
T ENA_TRANS.0 | MO2 1I_MOD.O | T10
T ENA_TRANS.1 | MO03 T_AD.5 | Ti1
M_PARITY | M14 T_AD.28 | T2
T_LOCKOP.O | M15 T_AD.27 | T13
T _LOCKOP.1 | M16 T_AD.28 | Ti4
T _SQURCE.O | NO1I T_AD.4 | T1s

BBN ACI Proprietary

‘R_DATA.

A: SIGA Speciﬂéalion

5

O WKW Www

-iEIE'E;EI

ZHHEAAHA
=
o
Q
Q
(5]
77}
w

=
(ol

NIA_INT

|
e o

o
=
58k

e

Ommmmwml
wiiwigw il
I
>

Bt i = DO =)

|
cmo
[y
335
oo
[v/]
o1

M_REJ_ABORT
R_FRAME
R_DATA.
R_DATA.

R_DATA.
S_DATA.
S_DATA.
S_NENA_BACK
S_FRAME
C_NEXECUTE
C_CLK

VSS

VDD

VSS
M_TONIB_INT
R_REVERSE
R_NENA_BACK
R_DATA.5
VSS

VDD

vss
S_DATA.6
S_DATA.3
S_DATA.O
S_CLK

C_IN
M_NRESET

MO - WO

387

A: SIGA Specification ' Butterfly Il Hardware Archirecture

D14 T |
D15 T_|

A.9

3 | T16 VDD
1 |

o =

.0 | W02 T _AD.
1 NO3 T AD.

:UFU

A.C./D.C. Parameters

All SIGA input and bidirectional pins have a light pullup resistor, a diode protection
network (max = 2000V) and latch-up (max = 200 ma). All inputs and output have
standard TTL VIL/VIH and VOL/VOH characteristics. All outputs and bidirection-
al pins have 4 ma drive capability. - except T_ENA TDAT<2.0> and

- T_ENA_TRANS < 1..0>, which have 8 ma drive capablhty The SIGA will d1551pate

less than 3 watts.

The following page shows the A.C. timing parameters.

.\"\."U‘m"'u“-u\"*-.."k"u‘-."'m‘h.\\‘\\\“hk\.\"&\\\\K\\\R\\HN\\‘;\NRKKKEM

NOTE
' For the B2ZVME, the foliowing A.C. parameters override the normal ones:
PIN/CLASS Tsu Thld Tpd (min/max) LOAD
T_NDRIVEN_SIGA - - 2.0/11.0 20.0
F_SOURCE<2..0> ©21.0 0.0 - -
i, " "’ln‘m" M, M M M M M M T M M M M M M T M M M S M M M M M
388 BBN ACI Proprietary ’ Draft: 9/20/88

D T o0 OB OED OED O ED

Butterfly li Hardware Architecture

SIGA A.C. CHARACTERISTICS

A: SIGA Specification .

PIN/CLASS Tsu Thld Tpd (min/max) LOAD
TBUS:
T _DRIVEN 25.0 0.0 - -
T_MPAUSE 25.0 0.0 - -
T_SPAUSE 25.0 0.0 - -
T_NBGRANT_SIGM 25.0 0.0 - -
T_NBGRANT_SIGS 25.0 0.0 - -
T_REQUEST (a) (a) 2.0/18.0 30.0
T RR<2..0> (a) (&) 2,0/18.0 30.0
T_PATH<1..0> (a) (a) 2.0/18.0 30.0
T_SOURCE<Z..0> (a) (a) 2.0/18.0 30.0
T_SIZE.2 (a) (a) 2.0/18.0 30.0
T_SIZE<l..0> 20.0 0.0 2.0/18.0 30.0
T_SYNC 20.0 0.0 2.0/18.0 30.0
T_LOCKOP<1..0> 20.0 0.0 2.0/18.0 30.0
T_PRIORITY<1..0> 20.0 0.0 2.0/18.0 30.0
T_AD<33..0> 20.0 0.0 2.0/18.0 30.0
T_NBREQ@_SIGM - - 2.0/13.0 20.0
T NBREQ_SIGS - - 2.0/13.0 20.0
T_NDRIVEN_SIGA - - 2.0/13.0 20.0
T_NSPAUSE_SIGA - - 2.0/13.0 20.0
T_ENA_TDAT<2..0> - - 2.0/15.0 30.0
T_ENA_TRANS<1..0> - - 2.0/15.0 30.0
T_ENA_HOLD (d) o
FAST:
F_REQUEST 25.0 0.0 - -
F_RR<2..0> 24.0 0.0 - -
F_SOURCE<2. .0> 25.0 0.0 - -
F_PATH<1..0> 25.0 0.0 - -
F_SIZE 2 25.0 0.0 - -
F_AD<24..16> 25.0 0.0 - -
SWITCH - REQ:
R_DATA<T7..0> 2.0 6.0 2.0/13.0 20.0
R_REVERSE 2.0 6.0 - -
R_FRAME - - 2.0/13.0 20.0
R_NENA_BACK - - 2.0/13.0 20.0
R_CLK (c)
SWITCH - SER:
S_DATA<7..0> 2.0 2.0 2.0/13.0 20.0
S_FRAME 2.0 6.0 - -

Draft: 9/20/88 BBN ACI Proprietary ' 389

A: SIGA Specification

S_REVERSE
S_NENA_BACK
R_CLK

TCS:

C_IN
c_out
C_NEXECUTE

INTERLEAVER:
I_MOD<8..0>
I_INTERLEAVED
I_NACCESS

MISCELLANEOUS:
M_TONIA INT
M_TONIB_INT
M_PARITY
M_NSELECT
M_NDEBUG
M_SIXTY_FIVE
M_NRESET

M_REJ ABORT

specific:

50.0

50.0

17.0
24.0

50.0

50.0

o o
o o

[

o

0/13.
.0/13.

.0/50.

Butterfly | Hardware Archirecture

c 20.0
0 20.0
.0 20.0
0 20.0
0 20.0

(a) No internal connectlon to SIGA - timing is unimportant
(b) Synchronized within SIGA - timing is unlmportant
5.3 ns

(c) MINIMUM HIGH time for [RS]_CLK =
(d) [TF]_CLK rising to T_ENA_HOLD rising =
T_ENA_HOLD minimum HIGH time
T_ENA_HOLD falling to {TF]_CLK rising

general:

1. All times in nanoseconds

(s> I3 - N L o)

All loads in picofarads
. TBUS, FAST and INTERLEAVER timing are relative to rising T _CLK
SWITCH - REQ timing is relative to rising R_CLK
SWITCH - SER timing is relative to rising S_CLK
. TCS timing is relative to falling C_CLK

6 ns

BEN ACI Proprietary

15 ns minimum

= 4.5 ns minimum

Draft; 9/20/88

T

3
i
1

XC88100 CPU ERRATA Ver. 1.7
C89B Mask revision D.5 -
. 01/16/89

Please refer all questions fo the Motorola Applications Hotline at (512) 891-APPS.
ERRATA:
1. There is a time interval in each clock cycle when the assertion of the PLLEN (Phase Lock Loop Enable)

I SN EE DI DB N S I CEN I I CEm

signal may not be properly recognized. The interval is a 1-2 ns window centered approximatety 8.5 ns after
the faling edge of the clock. '

Workaround: If a board is experiencing this problem, PLLEN can be delayed a few ns to cause the signal to
miss the window. PLLEN can aiso be synchronized to the rising edge of the clock to guarantee that the
window will be missed. :

Data memory accesses during an exbeption hangler can modify the contents of the Data Memory
Transaction Register 0 (DMTQ, cr8). This ¢an fool the exception handler into thinking that a Data Access
Exception has occurred.

Warkaround: The exception handler should immediately copy DMTQ to a spare register and to pertorm
subsequent reads from this register instead of DMT0.

Integer divide immediate instructions (DIV and DIVU) will retum an incorrect result if the immediate operand
matches the binary pattem (X011 1)00000XXXXX), where an X represents a don' care.

~ Workaroundi: Do not use immediate values in the range of 0x3800 - 0x3FFF or 0xB800 - OxBFFF when

issuing an irteger divide immediate instruction.
Workaround?2: Use idiv in place of the idiv.imm instruction.

A Floating point multiply instruction will not work property if either operand is double precision and the
sacond half of the instruction initiation gets a scoreboard hold. e

Workaround: Insure that the operands are available when using the floating point muttiply instruction with
double precision operands. One way to accompiish this is o insert a trap not taken before each floating
point multiply instruction that uses double precision cperands. '

The cpu may skip instructions following store double (STD) and floating point instructions (involving doubte
precision operands), if it receives an unexpected wait from the code cmmu.

Workaround 1: Convert all store doubles to two store singles and only perform floating peint anthimetic with
single precision operands.

Warkaround 2: For single processor systems only.' Qisable bus snooping on the code cache and insen a
trap not taken after every code cmmu control register access.

Workaround 3: For muitiprocessor systems only. Disable bus snooping on the code cache, prevent remote
cmimu register accesses and insert a trap not taken after every code cmmu controil register access.

The CPU will * lock-up ' if an RTE is executed in Serial Mode and the Shadow Scoreboard is not clear. Most
software implementations will encounter this in the interrupt haniler onty.

" Workaround 1; Do not use the floating point unit (FPU) in Serial Mods.,

Workaround 2: Modify the interrupt handler to flush the FPU (reenable the FPU, making sure that the cou
is not in serial mode, and stall for 80 cycies in an idle loop) and clear the SSBR before executing an RTE.

If a floating point instruction with a double precision destination generates an imprecise exception
sinmltane:aus with any other exception ot higher priority, then the SFU imprecise exception is never
recoghized.

MC88100 ERRATA

N N DEN MR SN =m0 e

o SN CHE S

TN [N 3 DR e

|

Workaround 1: Do not run code that causes imprecise exceptions.
Workaround 2: Do not generate double precision results.

Warkaround 3: Prevent the simultaneous exceptions by placing a "trap not taken™ betore and after it ¢
floating point instruction and by disabling interrupts during its execution. '

8. _if an intarrupt occurs with intemupts enabled but shadowing frozen, the interrupt exception vector is taken.
This is incorrect; any exception recognized with shadowing frozen should go to the Error vector.

Workaround: Interrupts should never be enabled if shadowing is frozen.

GENERAL INFORMATION:

-1, Data in the data shadow registers (DSD0-DSD2} Is only valid if the corresponding transaction is a store. if
running in master/checker mode, do not store data from these registers to memory when the data is invalid.

2. Dus to the current test environment, the 88100 is not guarantead to werk in Checker Mode(PCE pin

asserted). Though it is tait that Checker Mode operates properly, until & can be verified on the tester, usa of
this mode is at the users own risk. '

CURRENT DOCUMENTATION:

MC88140 User's Manual, MC83100UM/AD
MC8810G Technical Summary, Document BR588/D Rev. 1

N L n P PRPR A

/

-

;
,;

f—

88200 CMMU ERRATA Ver. 1.3
C87C Mask revision C.0
CMMU ID Register Ver. 00100
01/05/88

Please refer all questioris to the Motorola Applications Hotline at (512) 891-APPS.

ERRATA:

1.

The use of the xmem (exchange register with memory) instruction with the .bu option may
cause the cmmu 10 write corrupted data to RAM.

Workaround: Do not use the bu axtension with the xmem instruction. Only use xmem on 32 bit
values. '

Thers Is a time Interval during each clock cycle when the assertion of the PLLEN (Phase Lock

Loop Enahle) signal may not be properly recognized. The interval is & 1-2 ns window centered

approximately 8.5 ns after the falling edge of the clock.

Workaround: If a board is éxperiencing this probiem, PLLEN can be .de!ayed a few ns to cause
the signal to miss tha window. PLLEN can also be synchrenized to the rising edge of the clock 1o
guarantee that the window will be missed. :

A snooping cmmu should [nvalidate a cache entry it it detects an MBUS master attempting !0
write (or read with intent to modify) to a "global® memary location which is cached by the

. $nooping cmmu and is marked "shared unmodified”.” The snooping cmmu fails to perform the

invaiidation if it is servicing a pending PBUS write which hits an ATC entry marked "global® or
*writethrough®. -

Workaround: Do not use bus snooping.

CURRENT DOCUMENTATION:

MC88200 User's Manual, MC88200UM/AD
MC88200 Technicai Summary, Document BR539/D Rev. 1

MC88200 ERRATA

Ulkerteta. A wian S S ‘

s b

)

XC88200 CMMU ERRATA Ver. 1.1
C87C Mask revision C.1
CMMU 1D Register Ver. 00101
01/05/88

y

Please refer all questions to the Motorola Applications Hotline at (512) 891-APPS.

ERRATA! _

1. The use of the xmem (exchange register with mernory) instruction with the .bu option may cause the cmmu {0
write corrupted data to RAM. '
Workaround: Do net use the .bu extension with the xmem instruction. Only use

e assertion of the PLLEN {Phase Lock Loop Enable}
-2 hs window certered approximately 8.5 ns after the

mem on 32 bit values.

m

2. There Is a time interval during each clock cycle when th
may not be property recognized. Theirtervalisa

signal
falling edge of the clock.
if 2 board s experiencing this problem, PLLEN

miss the window. PLLEN can also be synchronized 1o the
window will ba missed. :)

GENERAL INFORMATION:

1. The cache should ba flughed before setting the C1 {Cache Inhibit) bit in the Supervisor and User Area Peointer
Registers (SAPR, UAPR) , the BATC Write Ports (BWPQ - BWP?7), and the PATC eriries.

f) and Bus Acknowledge (BA) signals
for duplicate arbitration logic.

can be delayed a few ns to oausa the signai to
rising edge of the clock to guarantee that the

3. While in MBUS checker mode (MCE pin asserted), the Bus Request (B
are not tristated. These signals will continue 10 drive valid states o allow

CURRENT DOCUMENTATION:

MC88200 User's Manual, MC88200UM/AD
MC88200 Technical Summary, Document BR589/D Rev. 1

r

