LOW SPEED ASSEMBLER

© by 1iLAC CORP, 1970, 1971 Pages

ST

LOW SPEED ASSEMBLER

GENERAL INFORMATION

The Low Speed Assembler is a two pass assembler which
reads a paper tape source program and generates a binary
coded paper tape object program. It may also be used to
generate several printed tables.

It is now programmed to read input from a teletype tape
reader and print or punch tape on a teletype. However,
it would be easy to change it to use other input or out-
put devices.

Two characters, rubout=177 or 377 and SHIFT-CONTROL -P
=000 or 200, are ignored wherever they appear on the
source tape.

The object tape is in a format compatible with our TTY
bootstrap loader program.

There is no limit to the number of characters on a line.

However, there is a 1imit to most of the tables stored
by the assembler:

macro table 4259 total instructions

macro call sequence £ 64 references

literals <192 literals

errors < 96 errors

saves <192 saves

duplications .5 63 instructions to duplicate

If these 1imits are exceeded the tables will run over
into each other.

I
. or ‘
" SYMBOL D OPCODE ADDRESS/COMMENT CR-LF

SYMBOL o - o - .

A letter or a letter and an octal digit 1~-7.

May be replaced by a space.
Must not be preceded by a space,

I-or D ' ‘ . L
I for indirect addressing '

D is a display opcode follows
- May be omitted

. OPCODE

A three letter code for an instruction or a pseudo opcode

P

-

/////

ADDRESS -
May be:
~an octal no. ' | : - 375
a symbol ' v Al ‘ .
a pt. relative address =15 :
a symbol relative address A3+14
a literal . =321
v . =¢ JMS B7-2
s : . =gSAV
a save #XAC

omitted if instruction does not requlre an address
(Address field ends with first space after useful information)

COMMENTS |

" Must be preceded by a space if there is an address field.
Need not be preceded by a slash but are neater looking if

they are.
May use entire line if slash is first character on line.

Are terminated by a line feed.

LITERALS

-

A literal is used to introduce an octal constant, an
address constant, an instruction constant, or a save
address into a program without the bother of labeling
it and entering it separately into the source program.
Just write the octal constant, address constant,

,"'<1nstruct101" constant, or save, preceded by an equal

sign, in the address field(s) of the statement(s) in
which it is used. The assembler places all literals after
the saves of the program and gives a listing of these
addresses and the literals assigned to them.
AND =177 /mask rt. seven bits

ADD =A3-5 /ADD A3-5 to AC ‘
LAC =< D JMPC /load the instruction "D JMP C" into the AC
LAC =#SAV /load the address of #SAV ;nto the AC

SAVES

A save is similar to a literal in that it is a way of
introducing a saved memory cell into a program without

-labeling it and enterlﬂg it seoarqtely into the source

program. It is useful for reserving merory cells for
counters and other variables. Just assign the variable
a 3 letter code, and write that code, p‘eceded by a #,
in the address field of the statement(s) in which it is
used. The assembler places all saves immediately after

the last source statement of the program. .

DAC #XAC /DAC in word called XAC

PSEUDOS

ORG 21 The following statements start at location 21.
(used at start of source program)

REL Al+2 ', The LOllOWlﬁg Suatemeﬂus start at locatlon Al+2
(used anywhere in program)

BSS 5 . Reserve the 5 followiﬁg memory words.

REP 12 Repeat the previous instruction 12 times.

ZRO Al+6 . Place the address Al+6 in this location.

OCT 175462 - Place the octal No. (175462) in this Jocation.

A2 EQU C7-3 Set the symbolic address A2 equal to the address

€7-3.
. END . This is the end of the source program.
DUP 3 6 Duplicate the following 3 statements & times.

MCD A 14

MCE

MCC A 14 B2

INS @7

INC E B3-2 -/

INCREMENT MODE

w Z2 ®M o W

A 273

space

0123 ..

Enter increment mode.

‘Use the following 14 statements to define the

macro (A).
This is the end of the macro definition.

177 X =37 < J¥MS A2 /Call 14 step macro, A
Insert the 14 step macro A using B2 as the
address for @1, 177 for @2, X for @3, the
address of the literal =37 for @4, and the
instruction (SMS A2) following < in place
of INS @5. .

Reserve this instruction position in the maéro_
we are now cefining for an instruction to be
specified in the 7th information p051tlon in
the call for this macro.

Interpre» (E B3-2) as two increment mode
display bytes. '

This is the end of the increment mode word
/ necessary ' - :

Turn the beam on for the following increment bytes.
Turn the beam off for the following increment bytes.
Exit increment mode, zero X and Y LSB. (111)

Exit increment mode, return from D JMS, zero
X and Y LSB. (151) :

Exit increment mode, return from D JMS, add
oné to X MSB, zero X and Y LSB. (171)

Pause. (200)

. Make this byte 273. .

Ignore. ' ‘ ’ . "
Form byte.
Form byte.

Form byte.

e - . TEA-

s~ - . MACRO INSTRUCTIONS

The Low Speed Assembler is capable of storing 26 programmer .

defined macros of not more than 259 +total instructions. In

defining a macro one can use constant instructions, instruc-

. _ : tions with point relative addresses, instructions to be

- specified in the macro call, and instructions with addresses
' to be specified in the macro call.

Each of these macros can then be called as often as necessary.

. On a macro call a slash is needed after all the variable
information is specified. If the call sequence takes up more
than one line of characters, type SHIFT-N CR-LF, and continue
on the next line. : E '

Examples of macro calls and definitions are included with this
write up. ’ '

PRINTOUT

4

The Lo¥ Speed Assembler does not list the source tape or produce
.an object listing. A source listing can be obtained by running
.. the teletype on local, and an object listing can be obtained by
w=v . . * -using one of several listing programs.

.. -, . -~

. . Thelow speed Assembler does, however, list several tables at
T the end of the first pass and also if you push CONTINUE at the
' ‘end of the second pass. .

SYMBOL TABLE

Omitted if DS bit 15 down . . : ‘
7= +7 A list of the defined symbols and the addresses assigned to them.

- UNREFERENCED SYMBOL TABLE

e ‘Omitted if DS bit 14 down | o
.77 77 A list of the defined but unreferenced symbols and their addresses

~ ERROR TABLE

Omitted if DS bit 13 down
A list of the addresses at which errors took place.

SAVE TABLE ' - | | :
Omitted if DS bit 12 down IR '
A list ¢f the saved addresses and their corresponding three
letter codes. _ :

LITERAL TABLE

o

Omitted if D it
A list of the adar
- ing constants.

11 down
esses assigned to literals and tihe correspond-

- = . :Zo .A -
M‘\w . —— - b - - -
— - . T - :

Lo c . R ST NG e e TS e e S e A A e -

‘ORIGIN | o C By

. END o . | " -

- MACRO TA3LE - o - i

Omltted if DS bit 10 dOWﬁ : .
A list of the deiined macros, the rnstruc fons In each, and
information on how to interpret tne calling sequence fox the
particular macro. 4 , Py .

Omltted if DS bit 9 down . .
The address of ‘the origin of tne progran.

Omitted if DS bit 9 down .7 . S
The address of the last sourxce statement. ‘
LAST
Omitted if DS bit 9 down
The adaress of the last save, llteral or source statement.
ERRORS

- .o--.-.:y.c.

- < The LNVSpeed Assembler recognlzes several kinds of errors and .
lists the addresses at which these errors occurred at the end
of pass 1, and pass 2 if you push CONTINUE*. However, the
second pass may be made even if errors were found on the first
pass; NOP's will be assembled wherever the source tape has an
error.

Usually errors are obvious, but here are some that are not:

Referencing an undefined symbol - (This type of
error will only show up on second pass symbol table)

Not puttlng D before a dlSplay command

Hav1ng non~pr1nt1ng control characters on the source
tape

" Trying to define a symbol twice . S

*It is a good idea to get a table printout after the second pass as

 SOme errors are not recognlzed until the second pass and the origin,

end, last addresses give a good indication as to-whether or ‘not .
your program was interpreted the same on both passes.

~

AL -

N I e —————— T e T SN A e A ~ o~~~

A SEPERATE TAPES

If the source tape is in several sections, square off
A the ends and run them through separately. Push start
. for the first section and continue for each successive
. section.

czeececcéce

g o

TO USE:=--- Load Low Speed Assembler with TTY bootstrap in 40.
Load source tape in TTY
Switch TTY to on line
Start computer at 100
Start TTY reader

When computer encounters END instruction it will
type out all tables (DEPENDING ON DS settings).

Reload source tape fn TTY

Turn punch on (leader will be punched)
Push CONTINUE for pass two

Start TTQ‘readek when preceder is punéhed
Turn punch off |
Push CONTINUE for another set of tables.

