DEBUGGER 5.0

© by IHILAC CORP. 1970, 1971

Pages
1-6



DEBUGGER

GENERAL INFORMATION

The debugger, an octal debugging aid, enables the user to trace the
actions of his program and to edit his program. It allows the user
to examine the contents of any memory location and to change the
contents if he so desires. The user can trace through his program,
step by step or subroutine by subroutine. The trace portion also -
allows the user to test his program to find out if and when a cer-
tain instruction is executed or a certain memory location is re-

ferenced or reaches a given value. The debugger may also be used

to slow down a user's program by running it interpretively.

Some of the nice features of the debugger are: .

it only uses 1K of core
input from the keyboard is simple

the CRT output is fast and efficient
The debugger does not trace display processor instructions, but
allows them to be executed.



TO USE

‘The user's program must be in core, but not using the top 1K of

core (6000-7777 in a 4K machine).

Load the debugger with the TTY or PTR bootstrap in 40(8)' The

The Debugger starts automatically. It can be restarted at location

6000 (for a 4K machine). Jboc e Fex &K"WMELWEZ

To stop the debugger switch DS bit 0 down. If the PDS-1 still
doesn't stop, push STOP on the console.

EXAMINING AND CHANGING INSTRUCTIONS

Assume the user wishes to examine the contents of'memory locations
100(8) th;ough 105(8).

He should type control C (c®) to activate the type in-type out.
Then the user should type one, zero, zero, space. The PDS-1 will

 type a space, the octal contenté of location 100(8), and another

space. The user should type a period. The PDS-1 will then type
CR-LF, 0101, space, the contents of 101(8)’ and another space.

In this manner the user can continue to examine sequential memory
locations by typing periods.

If the PDS-1 typed out the contents of 105(8) as 001032 and the
user wanted the contents to be 001061, then immediately after the
001032 was typed out he should type zero, zero, one, zero, six, one,
period or one, zero, six, one, period. The PDS-1 will store 001061

in 105 and type out location 106 and its contents.,

In other words, to change a memory location, have the PDS-1 type out
its old contents then type the new contents followed by a period.

(2)



(3)

TRACE

There are many ways to use the trace portion of the debugger program.
However, in each method the user must tell the debugger at what
address of core he would like to start tra01ng To specify the start-
ing address the user should type control s (S%) followed by the octal
address, followed by a period. The user is now ready to start tracing
his program beginning at the address he just specified.

The simplest way to trace a program is instruction by instruction.
To do this type a (a%). The debugger will then execute the next
instruction in the execution path of the user's program, and output
the results via the CRT. The output is in octal format and consists
of the instruction address, the 1nstructlon, the contents of the
accumulator after the execution of the current instruction, and the
contents of the link after execution. On all * instructions which
alter or reference memory, the new contents .or referenced contents
are also printed. (The contents are actually altered.)

If the user desires to trace every statement of a program but also
move through the program faster, he may type a (Qc) which is the
equivalent of 8 (aS)'s.

* The execution of a JMS instruction alters memory, but is not printed
as a memory altering statement. On an auto indexing command two l
memory locations are altered, but the index location is not outputted.

In some cases the user may have a long loop where he is only concerned

with tracing a part of it each time the loop is executed. In a case

-like this it would be very convenient to have the debugger trace all

statements in the loop, but only output information on a certain group
of instructions. This is possible by defining output limits. For
example, assume the users program has a loop from 2340(8) to 2600(8)’
(8) to 2522(8)
receive output on only the 2505 to 2522 portion, the user should type
a (D ) followed by HZDOJ 2522, The user can then start the debugger
at 2340, and when he types (A )+ the debugger will start tracing at

and the critical portion is from 2505 inclusive. To

2340 but not output anything or stop until it has executed and outputted



(;1

(4)

statement 2505. These outputting limits of 2505 to 2522 will

(8) (8)

stay in effect until they are changed.

There may also be cases where the user doés not wish to trace the execu-
tion of a subroutine step by step, but would like to have that subroutine
executed, find out the contents of the accumulator after the execution of
the subroutine, and continue on in the program. The user can do this by
tracing up to and including the jump subroutine (JMS) statement, and then .
typing a (Wc). The subroutine will be executed, but output will be sus-
pended until the execution of the statement following the JMS. This A
method will not work on subroutines that return to places other than the

normal place, one statement after their JMS call.

There are three kinds of events for which the user's program may be
searched using the debugger. One event is the execution of the instruc-
tion in a particular memory location. To petform this kind of search,
the user should type (ZC) followed by the address of ‘the instruction,
followed by a period. The debugger will then trace from wherever it is
in the user's program until it executes the instruction in the specified
memory location. The debugger will output all information for the in-
structions it executes on the way which are within its currently defined

output limits.

The second event which may be searched for, using the debugger, is the
referencing of a specific memory location by the execution of a user's
program's instruction. This search is very similar to the previous
search, exéept that it is called by typing a (XC) followed by the speci-
fic memory location address followed by a period, and it is terminated

by the referencing of the specific memory location.

The third event is a specified location reaching a specified value.
This scarch is initiated by typing a (Ec), location, value, period. It

is terminated when the specified location reaches thie specified value.

If the debugger is not coming back from one of these search commands,

- (control shift repeat ESC) will cause it to stop.



(5)

X ~

C

'DISPLAY CONTROL

When the debugger is started at 6000, the screen is blank. As the
program is used the screen gradually acquires character formation.
(To save core, the only displayable characters are the octal digits,
CR, LF, space, period, and burn screen - the latter available only
as a special option). There is display buffer room for only about
350 characters. When.thié limit is exceeded a 3 line scroll takes
place. At any time when the debugger is waiting for 1nput the
screen may be cleared by typlng (DFL ).

OUTPUT (type in-type out)

INPUT
address contents (period or new contents period)
0025 167234 .
0026 001061 001032,
0027 010534 |
(trace)
, changed
address instruction C(AC) (CL) mem.address new contents
0175 001033 000101 0
0176 003003 001010. 0O
0177 020743 001010 0 0743 001010
0200 060744 017777 0
0201 1003023 141777 1



»
" q

L

)

C

Y

. W'

~SUMMARY OF COMMANDS

clear screen

enter type in-type out

define tract output limits

start trace |

another trace statement

eight trace statements

trace until next address of user's program,
no output in between (usually uéed to skip
through subroutines).

search user's program for execution of
specified instruction ,

search user's program for reference to

specified address

search user's program until specified location

reaches specified value

stop searching

(67}




